MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmdvlem1 Structured version   Visualization version   GIF version

Theorem ulmdvlem1 24367
Description: Lemma for ulmdv 24370. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
ulmdv.z 𝑍 = (ℤ𝑀)
ulmdv.s (𝜑𝑆 ∈ {ℝ, ℂ})
ulmdv.m (𝜑𝑀 ∈ ℤ)
ulmdv.f (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑋))
ulmdv.g (𝜑𝐺:𝑋⟶ℂ)
ulmdv.l ((𝜑𝑧𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
ulmdv.u (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
ulmdvlem1.c ((𝜑𝜓) → 𝐶𝑋)
ulmdvlem1.r ((𝜑𝜓) → 𝑅 ∈ ℝ+)
ulmdvlem1.u ((𝜑𝜓) → 𝑈 ∈ ℝ+)
ulmdvlem1.v ((𝜑𝜓) → 𝑊 ∈ ℝ+)
ulmdvlem1.l ((𝜑𝜓) → 𝑈 < 𝑊)
ulmdvlem1.b ((𝜑𝜓) → (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ⊆ 𝑋)
ulmdvlem1.a ((𝜑𝜓) → (abs‘(𝑌𝐶)) < 𝑈)
ulmdvlem1.n ((𝜑𝜓) → 𝑁𝑍)
ulmdvlem1.1 ((𝜑𝜓) → ∀𝑚 ∈ (ℤ𝑁)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑅 / 2) / 2))
ulmdvlem1.2 ((𝜑𝜓) → (abs‘(((𝑆 D (𝐹𝑁))‘𝐶) − (𝐻𝐶))) < (𝑅 / 2))
ulmdvlem1.y ((𝜑𝜓) → 𝑌𝑋)
ulmdvlem1.3 ((𝜑𝜓) → 𝑌𝐶)
ulmdvlem1.4 ((𝜑𝜓) → ((abs‘(𝑌𝐶)) < 𝑊 → (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) < ((𝑅 / 2) / 2)))
Assertion
Ref Expression
ulmdvlem1 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − (𝐻𝐶))) < 𝑅)
Distinct variable groups:   𝑘,𝑚,𝑥,𝑧,𝐹   𝑧,𝐺   𝑘,𝑁,𝑚,𝑥   𝐶,𝑘,𝑧   𝑧,𝐻   𝑘,𝑀,𝑥   𝜑,𝑘,𝑚,𝑥,𝑧   𝑆,𝑘,𝑚,𝑥,𝑧   𝑅,𝑚,𝑥   𝑘,𝑋,𝑚,𝑥,𝑧   𝑘,𝑌,𝑧   𝑘,𝑍,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑧,𝑘,𝑚)   𝐶(𝑥,𝑚)   𝑅(𝑧,𝑘)   𝑈(𝑥,𝑧,𝑘,𝑚)   𝐺(𝑥,𝑘,𝑚)   𝐻(𝑥,𝑘,𝑚)   𝑀(𝑧,𝑚)   𝑁(𝑧)   𝑊(𝑥,𝑧,𝑘,𝑚)   𝑌(𝑥,𝑚)

Proof of Theorem ulmdvlem1
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmdv.g . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
21adantr 466 . . . . 5 ((𝜑𝜓) → 𝐺:𝑋⟶ℂ)
3 ulmdvlem1.y . . . . 5 ((𝜑𝜓) → 𝑌𝑋)
42, 3ffvelrnd 6501 . . . 4 ((𝜑𝜓) → (𝐺𝑌) ∈ ℂ)
5 ulmdvlem1.c . . . . 5 ((𝜑𝜓) → 𝐶𝑋)
62, 5ffvelrnd 6501 . . . 4 ((𝜑𝜓) → (𝐺𝐶) ∈ ℂ)
74, 6subcld 10592 . . 3 ((𝜑𝜓) → ((𝐺𝑌) − (𝐺𝐶)) ∈ ℂ)
8 ulmdvlem1.n . . . . . . . . . . 11 ((𝜑𝜓) → 𝑁𝑍)
9 fveq2 6330 . . . . . . . . . . . . 13 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
109oveq2d 6807 . . . . . . . . . . . 12 (𝑘 = 𝑁 → (𝑆 D (𝐹𝑘)) = (𝑆 D (𝐹𝑁)))
11 eqid 2771 . . . . . . . . . . . 12 (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) = (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))
12 ovex 6821 . . . . . . . . . . . 12 (𝑆 D (𝐹𝑁)) ∈ V
1310, 11, 12fvmpt 6422 . . . . . . . . . . 11 (𝑁𝑍 → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑁) = (𝑆 D (𝐹𝑁)))
148, 13syl 17 . . . . . . . . . 10 ((𝜑𝜓) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑁) = (𝑆 D (𝐹𝑁)))
15 ovex 6821 . . . . . . . . . . . . . . 15 (𝑆 D (𝐹𝑘)) ∈ V
1615rgenw 3073 . . . . . . . . . . . . . 14 𝑘𝑍 (𝑆 D (𝐹𝑘)) ∈ V
1711fnmpt 6158 . . . . . . . . . . . . . 14 (∀𝑘𝑍 (𝑆 D (𝐹𝑘)) ∈ V → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍)
1816, 17mp1i 13 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍)
19 ulmdv.u . . . . . . . . . . . . 13 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
20 ulmf2 24351 . . . . . . . . . . . . 13 (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍 ∧ (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋))
2118, 19, 20syl2anc 573 . . . . . . . . . . . 12 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋))
2221adantr 466 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋))
2322, 8ffvelrnd 6501 . . . . . . . . . 10 ((𝜑𝜓) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑁) ∈ (ℂ ↑𝑚 𝑋))
2414, 23eqeltrrd 2851 . . . . . . . . 9 ((𝜑𝜓) → (𝑆 D (𝐹𝑁)) ∈ (ℂ ↑𝑚 𝑋))
25 elmapi 8029 . . . . . . . . 9 ((𝑆 D (𝐹𝑁)) ∈ (ℂ ↑𝑚 𝑋) → (𝑆 D (𝐹𝑁)):𝑋⟶ℂ)
2624, 25syl 17 . . . . . . . 8 ((𝜑𝜓) → (𝑆 D (𝐹𝑁)):𝑋⟶ℂ)
27 fdm 6189 . . . . . . . 8 ((𝑆 D (𝐹𝑁)):𝑋⟶ℂ → dom (𝑆 D (𝐹𝑁)) = 𝑋)
2826, 27syl 17 . . . . . . 7 ((𝜑𝜓) → dom (𝑆 D (𝐹𝑁)) = 𝑋)
29 dvbsss 23879 . . . . . . 7 dom (𝑆 D (𝐹𝑁)) ⊆ 𝑆
3028, 29syl6eqssr 3805 . . . . . 6 ((𝜑𝜓) → 𝑋𝑆)
31 ulmdv.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
32 recnprss 23881 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
3331, 32syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
3433adantr 466 . . . . . 6 ((𝜑𝜓) → 𝑆 ⊆ ℂ)
3530, 34sstrd 3762 . . . . 5 ((𝜑𝜓) → 𝑋 ⊆ ℂ)
3635, 3sseldd 3753 . . . 4 ((𝜑𝜓) → 𝑌 ∈ ℂ)
3735, 5sseldd 3753 . . . 4 ((𝜑𝜓) → 𝐶 ∈ ℂ)
3836, 37subcld 10592 . . 3 ((𝜑𝜓) → (𝑌𝐶) ∈ ℂ)
39 ulmdvlem1.3 . . . 4 ((𝜑𝜓) → 𝑌𝐶)
4036, 37, 39subne0d 10601 . . 3 ((𝜑𝜓) → (𝑌𝐶) ≠ 0)
417, 38, 40divcld 11001 . 2 ((𝜑𝜓) → (((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) ∈ ℂ)
42 ulmcl 24348 . . . . 5 ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻𝐻:𝑋⟶ℂ)
4319, 42syl 17 . . . 4 (𝜑𝐻:𝑋⟶ℂ)
4443adantr 466 . . 3 ((𝜑𝜓) → 𝐻:𝑋⟶ℂ)
4544, 5ffvelrnd 6501 . 2 ((𝜑𝜓) → (𝐻𝐶) ∈ ℂ)
4626, 5ffvelrnd 6501 . 2 ((𝜑𝜓) → ((𝑆 D (𝐹𝑁))‘𝐶) ∈ ℂ)
47 ulmdvlem1.r . . 3 ((𝜑𝜓) → 𝑅 ∈ ℝ+)
4847rpred 12068 . 2 ((𝜑𝜓) → 𝑅 ∈ ℝ)
4941, 46subcld 10592 . . . 4 ((𝜑𝜓) → ((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)) ∈ ℂ)
5049abscld 14376 . . 3 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) ∈ ℝ)
51 ulmdv.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑋))
5251adantr 466 . . . . . . . . . . 11 ((𝜑𝜓) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑋))
5352, 8ffvelrnd 6501 . . . . . . . . . 10 ((𝜑𝜓) → (𝐹𝑁) ∈ (ℂ ↑𝑚 𝑋))
54 elmapi 8029 . . . . . . . . . 10 ((𝐹𝑁) ∈ (ℂ ↑𝑚 𝑋) → (𝐹𝑁):𝑋⟶ℂ)
5553, 54syl 17 . . . . . . . . 9 ((𝜑𝜓) → (𝐹𝑁):𝑋⟶ℂ)
5655, 3ffvelrnd 6501 . . . . . . . 8 ((𝜑𝜓) → ((𝐹𝑁)‘𝑌) ∈ ℂ)
5755, 5ffvelrnd 6501 . . . . . . . 8 ((𝜑𝜓) → ((𝐹𝑁)‘𝐶) ∈ ℂ)
5856, 57subcld 10592 . . . . . . 7 ((𝜑𝜓) → (((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) ∈ ℂ)
5958, 38, 40divcld 11001 . . . . . 6 ((𝜑𝜓) → ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) ∈ ℂ)
6041, 59subcld 10592 . . . . 5 ((𝜑𝜓) → ((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶))) ∈ ℂ)
6160abscld 14376 . . . 4 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) ∈ ℝ)
6259, 46subcld 10592 . . . . 5 ((𝜑𝜓) → (((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)) ∈ ℂ)
6362abscld 14376 . . . 4 ((𝜑𝜓) → (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) ∈ ℝ)
6461, 63readdcld 10269 . . 3 ((𝜑𝜓) → ((abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) + (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)))) ∈ ℝ)
6548rehalfcld 11479 . . 3 ((𝜑𝜓) → (𝑅 / 2) ∈ ℝ)
6641, 46, 59abs3difd 14400 . . 3 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) ≤ ((abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) + (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)))))
6765rehalfcld 11479 . . . . 5 ((𝜑𝜓) → ((𝑅 / 2) / 2) ∈ ℝ)
684, 56, 6, 57sub4d 10641 . . . . . . . . . 10 ((𝜑𝜓) → (((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) = (((𝐺𝑌) − (𝐺𝐶)) − (((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶))))
6968oveq1d 6806 . . . . . . . . 9 ((𝜑𝜓) → ((((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶)) = ((((𝐺𝑌) − (𝐺𝐶)) − (((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶)))
707, 58, 38, 40divsubdird 11040 . . . . . . . . 9 ((𝜑𝜓) → ((((𝐺𝑌) − (𝐺𝐶)) − (((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶)) = ((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶))))
7169, 70eqtrd 2805 . . . . . . . 8 ((𝜑𝜓) → ((((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶)) = ((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶))))
7271fveq2d 6334 . . . . . . 7 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶))) = (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))))
734, 56subcld 10592 . . . . . . . . 9 ((𝜑𝜓) → ((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) ∈ ℂ)
746, 57subcld 10592 . . . . . . . . 9 ((𝜑𝜓) → ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)) ∈ ℂ)
7573, 74subcld 10592 . . . . . . . 8 ((𝜑𝜓) → (((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) ∈ ℂ)
7675, 38, 40absdivd 14395 . . . . . . 7 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶))) = ((abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) / (abs‘(𝑌𝐶))))
7772, 76eqtr3d 2807 . . . . . 6 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) = ((abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) / (abs‘(𝑌𝐶))))
78 eqid 2771 . . . . . . . 8 (ℤ𝑁) = (ℤ𝑁)
79 ulmdv.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
808, 79syl6eleq 2860 . . . . . . . . 9 ((𝜑𝜓) → 𝑁 ∈ (ℤ𝑀))
81 eluzelz 11896 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
8280, 81syl 17 . . . . . . . 8 ((𝜑𝜓) → 𝑁 ∈ ℤ)
83 ulmdv.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
8483adantr 466 . . . . . . . . . 10 ((𝜑𝜓) → 𝑀 ∈ ℤ)
85 fveq2 6330 . . . . . . . . . . . . . 14 (𝑧 = 𝑌 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑌))
8685mpteq2dv 4879 . . . . . . . . . . . . 13 (𝑧 = 𝑌 → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌)))
87 fveq2 6330 . . . . . . . . . . . . 13 (𝑧 = 𝑌 → (𝐺𝑧) = (𝐺𝑌))
8886, 87breq12d 4799 . . . . . . . . . . . 12 (𝑧 = 𝑌 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧) ↔ (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌)) ⇝ (𝐺𝑌)))
89 ulmdv.l . . . . . . . . . . . . . 14 ((𝜑𝑧𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
9089ralrimiva 3115 . . . . . . . . . . . . 13 (𝜑 → ∀𝑧𝑋 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
9190adantr 466 . . . . . . . . . . . 12 ((𝜑𝜓) → ∀𝑧𝑋 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
9288, 91, 3rspcdva 3466 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌)) ⇝ (𝐺𝑌))
9379fvexi 6341 . . . . . . . . . . . . 13 𝑍 ∈ V
9493mptex 6628 . . . . . . . . . . . 12 (𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌))) ∈ V
9594a1i 11 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌))) ∈ V)
96 fveq2 6330 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
9796fveq1d 6332 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹𝑘)‘𝑌) = ((𝐹𝑛)‘𝑌))
98 eqid 2771 . . . . . . . . . . . . . 14 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))
99 fvex 6340 . . . . . . . . . . . . . 14 ((𝐹𝑛)‘𝑌) ∈ V
10097, 98, 99fvmpt 6422 . . . . . . . . . . . . 13 (𝑛𝑍 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))‘𝑛) = ((𝐹𝑛)‘𝑌))
101100adantl 467 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))‘𝑛) = ((𝐹𝑛)‘𝑌))
10252ffvelrnda 6500 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑𝑚 𝑋))
103 elmapi 8029 . . . . . . . . . . . . . 14 ((𝐹𝑛) ∈ (ℂ ↑𝑚 𝑋) → (𝐹𝑛):𝑋⟶ℂ)
104102, 103syl 17 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛𝑍) → (𝐹𝑛):𝑋⟶ℂ)
1053adantr 466 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛𝑍) → 𝑌𝑋)
106104, 105ffvelrnd 6501 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑌) ∈ ℂ)
107101, 106eqeltrd 2850 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))‘𝑛) ∈ ℂ)
10897oveq1d 6806 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
109 eqid 2771 . . . . . . . . . . . . . 14 (𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌))) = (𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))
110 ovex 6821 . . . . . . . . . . . . . 14 (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) ∈ V
111108, 109, 110fvmpt 6422 . . . . . . . . . . . . 13 (𝑛𝑍 → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
112111adantl 467 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
113101oveq1d 6806 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → (((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))‘𝑛) − ((𝐹𝑁)‘𝑌)) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
114112, 113eqtr4d 2808 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) = (((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))‘𝑛) − ((𝐹𝑁)‘𝑌)))
11579, 84, 92, 56, 95, 107, 114climsubc1 14569 . . . . . . . . . 10 ((𝜑𝜓) → (𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌))) ⇝ ((𝐺𝑌) − ((𝐹𝑁)‘𝑌)))
11693mptex 6628 . . . . . . . . . . 11 (𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ V
117116a1i 11 . . . . . . . . . 10 ((𝜑𝜓) → (𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ V)
118 fveq2 6330 . . . . . . . . . . . . . 14 (𝑧 = 𝐶 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝐶))
119118mpteq2dv 4879 . . . . . . . . . . . . 13 (𝑧 = 𝐶 → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶)))
120 fveq2 6330 . . . . . . . . . . . . 13 (𝑧 = 𝐶 → (𝐺𝑧) = (𝐺𝐶))
121119, 120breq12d 4799 . . . . . . . . . . . 12 (𝑧 = 𝐶 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧) ↔ (𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶)) ⇝ (𝐺𝐶)))
122121, 91, 5rspcdva 3466 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶)) ⇝ (𝐺𝐶))
12393mptex 6628 . . . . . . . . . . . 12 (𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))) ∈ V
124123a1i 11 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))) ∈ V)
12596fveq1d 6332 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹𝑘)‘𝐶) = ((𝐹𝑛)‘𝐶))
126 eqid 2771 . . . . . . . . . . . . . 14 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))
127 fvex 6340 . . . . . . . . . . . . . 14 ((𝐹𝑛)‘𝐶) ∈ V
128125, 126, 127fvmpt 6422 . . . . . . . . . . . . 13 (𝑛𝑍 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))‘𝑛) = ((𝐹𝑛)‘𝐶))
129128adantl 467 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))‘𝑛) = ((𝐹𝑛)‘𝐶))
1305adantr 466 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛𝑍) → 𝐶𝑋)
131104, 130ffvelrnd 6501 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝐶) ∈ ℂ)
132129, 131eqeltrd 2850 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))‘𝑛) ∈ ℂ)
133125oveq1d 6806 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
134 eqid 2771 . . . . . . . . . . . . . 14 (𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))) = (𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))
135 ovex 6821 . . . . . . . . . . . . . 14 (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)) ∈ V
136133, 134, 135fvmpt 6422 . . . . . . . . . . . . 13 (𝑛𝑍 → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
137136adantl 467 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
138129oveq1d 6806 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → (((𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))‘𝑛) − ((𝐹𝑁)‘𝐶)) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
139137, 138eqtr4d 2808 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛) = (((𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))‘𝑛) − ((𝐹𝑁)‘𝐶)))
14079, 84, 122, 57, 124, 132, 139climsubc1 14569 . . . . . . . . . 10 ((𝜑𝜓) → (𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))) ⇝ ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))
14156adantr 466 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝐹𝑁)‘𝑌) ∈ ℂ)
142106, 141subcld 10592 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) ∈ ℂ)
143112, 142eqeltrd 2850 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) ∈ ℂ)
14457adantr 466 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝐹𝑁)‘𝐶) ∈ ℂ)
145131, 144subcld 10592 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)) ∈ ℂ)
146137, 145eqeltrd 2850 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛) ∈ ℂ)
147108, 133oveq12d 6809 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))) = ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))))
148 eqid 2771 . . . . . . . . . . . . 13 (𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))) = (𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))
149 ovex 6821 . . . . . . . . . . . . 13 ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))) ∈ V
150147, 148, 149fvmpt 6422 . . . . . . . . . . . 12 (𝑛𝑍 → ((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛) = ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))))
151150adantl 467 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛) = ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))))
152112, 137oveq12d 6809 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → (((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) − ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛)) = ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))))
153151, 152eqtr4d 2808 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛) = (((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) − ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛)))
15479, 84, 115, 117, 140, 143, 146, 153climsub 14565 . . . . . . . . 9 ((𝜑𝜓) → (𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ⇝ (((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))))
15593mptex 6628 . . . . . . . . . 10 (𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))) ∈ V
156155a1i 11 . . . . . . . . 9 ((𝜑𝜓) → (𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))) ∈ V)
157142, 145subcld 10592 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))) ∈ ℂ)
158151, 157eqeltrd 2850 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛) ∈ ℂ)
159147fveq2d 6334 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
160 eqid 2771 . . . . . . . . . . . 12 (𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))) = (𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
161 fvex 6340 . . . . . . . . . . . 12 (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ V
162159, 160, 161fvmpt 6422 . . . . . . . . . . 11 (𝑛𝑍 → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
163162adantl 467 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
164151fveq2d 6334 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → (abs‘((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛)) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
165163, 164eqtr4d 2808 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) = (abs‘((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛)))
16679, 154, 156, 84, 158, 165climabs 14535 . . . . . . . 8 ((𝜑𝜓) → (𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))) ⇝ (abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))))
16738abscld 14376 . . . . . . . . . . 11 ((𝜑𝜓) → (abs‘(𝑌𝐶)) ∈ ℝ)
16867, 167remulcld 10270 . . . . . . . . . 10 ((𝜑𝜓) → (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))) ∈ ℝ)
169168recnd 10268 . . . . . . . . 9 ((𝜑𝜓) → (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))) ∈ ℂ)
17079eqimss2i 3809 . . . . . . . . . 10 (ℤ𝑀) ⊆ 𝑍
171170, 93climconst2 14480 . . . . . . . . 9 (((((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))) ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))}) ⇝ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
172169, 84, 171syl2anc 573 . . . . . . . 8 ((𝜑𝜓) → (𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))}) ⇝ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
17379uztrn2 11904 . . . . . . . . . . 11 ((𝑁𝑍𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
1748, 173sylan 569 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
175174, 162syl 17 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
176157abscld 14376 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ ℝ)
177174, 176syldan 579 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ ℝ)
178175, 177eqeltrd 2850 . . . . . . . 8 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) ∈ ℝ)
179 ovex 6821 . . . . . . . . . . 11 (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))) ∈ V
180179fvconst2 6611 . . . . . . . . . 10 (𝑛𝑍 → ((𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))})‘𝑛) = (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
181174, 180syl 17 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))})‘𝑛) = (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
182168adantr 466 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))) ∈ ℝ)
183181, 182eqeltrd 2850 . . . . . . . 8 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))})‘𝑛) ∈ ℝ)
184174, 104syldan 579 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑛):𝑋⟶ℂ)
185 ffn 6183 . . . . . . . . . . . . . 14 ((𝐹𝑛):𝑋⟶ℂ → (𝐹𝑛) Fn 𝑋)
186184, 185syl 17 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑛) Fn 𝑋)
18755adantr 466 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑁):𝑋⟶ℂ)
188 ffn 6183 . . . . . . . . . . . . . 14 ((𝐹𝑁):𝑋⟶ℂ → (𝐹𝑁) Fn 𝑋)
189187, 188syl 17 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑁) Fn 𝑋)
190 ulmscl 24346 . . . . . . . . . . . . . . 15 ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻𝑋 ∈ V)
19119, 190syl 17 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ V)
192191ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ V)
1933adantr 466 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑌𝑋)
194 fnfvof 7056 . . . . . . . . . . . . 13 ((((𝐹𝑛) Fn 𝑋 ∧ (𝐹𝑁) Fn 𝑋) ∧ (𝑋 ∈ V ∧ 𝑌𝑋)) → (((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝑌) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
195186, 189, 192, 193, 194syl22anc 1477 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝑌) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
1965adantr 466 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝐶𝑋)
197 fnfvof 7056 . . . . . . . . . . . . 13 ((((𝐹𝑛) Fn 𝑋 ∧ (𝐹𝑁) Fn 𝑋) ∧ (𝑋 ∈ V ∧ 𝐶𝑋)) → (((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝐶) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
198186, 189, 192, 196, 197syl22anc 1477 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝐶) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
199195, 198oveq12d 6809 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝑌) − (((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝐶)) = ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))))
200199fveq2d 6334 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (abs‘((((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝑌) − (((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝐶))) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
20130, 3sseldd 3753 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → 𝑌𝑆)
20230, 5sseldd 3753 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → 𝐶𝑆)
203201, 202ovresd 6946 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → (𝑌((abs ∘ − ) ↾ (𝑆 × 𝑆))𝐶) = (𝑌(abs ∘ − )𝐶))
204 eqid 2771 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
205204cnmetdval 22787 . . . . . . . . . . . . . . . . 17 ((𝑌 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑌(abs ∘ − )𝐶) = (abs‘(𝑌𝐶)))
20636, 37, 205syl2anc 573 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → (𝑌(abs ∘ − )𝐶) = (abs‘(𝑌𝐶)))
207203, 206eqtrd 2805 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → (𝑌((abs ∘ − ) ↾ (𝑆 × 𝑆))𝐶) = (abs‘(𝑌𝐶)))
208 ulmdvlem1.a . . . . . . . . . . . . . . 15 ((𝜑𝜓) → (abs‘(𝑌𝐶)) < 𝑈)
209207, 208eqbrtrd 4808 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝑌((abs ∘ − ) ↾ (𝑆 × 𝑆))𝐶) < 𝑈)
210 cnxmet 22789 . . . . . . . . . . . . . . . 16 (abs ∘ − ) ∈ (∞Met‘ℂ)
211 xmetres2 22379 . . . . . . . . . . . . . . . 16 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
212210, 34, 211sylancr 575 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
213 ulmdvlem1.u . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 𝑈 ∈ ℝ+)
214213rpxrd 12069 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝑈 ∈ ℝ*)
215 elbl3 22410 . . . . . . . . . . . . . . 15 (((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝑈 ∈ ℝ*) ∧ (𝐶𝑆𝑌𝑆)) → (𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ↔ (𝑌((abs ∘ − ) ↾ (𝑆 × 𝑆))𝐶) < 𝑈))
216212, 214, 202, 201, 215syl22anc 1477 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ↔ (𝑌((abs ∘ − ) ↾ (𝑆 × 𝑆))𝐶) < 𝑈))
217209, 216mpbird 247 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))
218217adantr 466 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))
219 blcntr 22431 . . . . . . . . . . . . . 14 ((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝐶𝑆𝑈 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))
220212, 202, 213, 219syl3anc 1476 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝐶 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))
221220adantr 466 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝐶 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))
222218, 221jca 501 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ∧ 𝐶 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈)))
22331ad2antrr 705 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑆 ∈ {ℝ, ℂ})
224 eqid 2771 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
22530adantr 466 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑋𝑆)
226184ffvelrnda 6500 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝐹𝑛)‘𝑦) ∈ ℂ)
227187ffvelrnda 6500 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝐹𝑁)‘𝑦) ∈ ℂ)
228226, 227subcld 10592 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦)) ∈ ℂ)
229 eqid 2771 . . . . . . . . . . . . . 14 (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦))) = (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦)))
230228, 229fmptd 6525 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦))):𝑋⟶ℂ)
231 fvexd 6342 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝐹𝑛)‘𝑦) ∈ V)
232 fvexd 6342 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝐹𝑁)‘𝑦) ∈ V)
233184feqmptd 6389 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑛) = (𝑦𝑋 ↦ ((𝐹𝑛)‘𝑦)))
234187feqmptd 6389 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑁) = (𝑦𝑋 ↦ ((𝐹𝑁)‘𝑦)))
235192, 231, 232, 233, 234offval2 7059 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝐹𝑛) ∘𝑓 − (𝐹𝑁)) = (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦))))
236235feq1d 6168 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (((𝐹𝑛) ∘𝑓 − (𝐹𝑁)):𝑋⟶ℂ ↔ (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦))):𝑋⟶ℂ))
237230, 236mpbird 247 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝐹𝑛) ∘𝑓 − (𝐹𝑁)):𝑋⟶ℂ)
238202adantr 466 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝐶𝑆)
239214adantr 466 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑈 ∈ ℝ*)
240 eqid 2771 . . . . . . . . . . . 12 (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) = (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈)
241 ulmdvlem1.b . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ⊆ 𝑋)
242241adantr 466 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ⊆ 𝑋)
243235oveq2d 6807 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁))) = (𝑆 D (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦)))))
244 fvexd 6342 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑆 D (𝐹𝑛))‘𝑦) ∈ V)
245233oveq2d 6807 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑛)) = (𝑆 D (𝑦𝑋 ↦ ((𝐹𝑛)‘𝑦))))
24696oveq2d 6807 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑛 → (𝑆 D (𝐹𝑘)) = (𝑆 D (𝐹𝑛)))
247 ovex 6821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 D (𝐹𝑛)) ∈ V
248246, 11, 247fvmpt 6422 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑍 → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) = (𝑆 D (𝐹𝑛)))
249174, 248syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) = (𝑆 D (𝐹𝑛)))
25021ad2antrr 705 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋))
251250, 174ffvelrnd 6501 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) ∈ (ℂ ↑𝑚 𝑋))
252249, 251eqeltrrd 2851 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑛)) ∈ (ℂ ↑𝑚 𝑋))
253 elmapi 8029 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 D (𝐹𝑛)) ∈ (ℂ ↑𝑚 𝑋) → (𝑆 D (𝐹𝑛)):𝑋⟶ℂ)
254252, 253syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑛)):𝑋⟶ℂ)
255254feqmptd 6389 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑛)) = (𝑦𝑋 ↦ ((𝑆 D (𝐹𝑛))‘𝑦)))
256245, 255eqtr3d 2807 . . . . . . . . . . . . . . . . 17 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝑦𝑋 ↦ ((𝐹𝑛)‘𝑦))) = (𝑦𝑋 ↦ ((𝑆 D (𝐹𝑛))‘𝑦)))
257 fvexd 6342 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑆 D (𝐹𝑁))‘𝑦) ∈ V)
258234oveq2d 6807 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑁)) = (𝑆 D (𝑦𝑋 ↦ ((𝐹𝑁)‘𝑦))))
25926adantr 466 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑁)):𝑋⟶ℂ)
260259feqmptd 6389 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑁)) = (𝑦𝑋 ↦ ((𝑆 D (𝐹𝑁))‘𝑦)))
261258, 260eqtr3d 2807 . . . . . . . . . . . . . . . . 17 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝑦𝑋 ↦ ((𝐹𝑁)‘𝑦))) = (𝑦𝑋 ↦ ((𝑆 D (𝐹𝑁))‘𝑦)))
262223, 226, 244, 256, 227, 257, 261dvmptsub 23943 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦)))) = (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))))
263243, 262eqtrd 2805 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁))) = (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))))
264263dmeqd 5462 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → dom (𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁))) = dom (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))))
265 ovex 6821 . . . . . . . . . . . . . . 15 (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)) ∈ V
266 eqid 2771 . . . . . . . . . . . . . . 15 (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) = (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))
267265, 266dmmpti 6161 . . . . . . . . . . . . . 14 dom (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) = 𝑋
268264, 267syl6eq 2821 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → dom (𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁))) = 𝑋)
269242, 268sseqtr4d 3791 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ⊆ dom (𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁))))
27067adantr 466 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑅 / 2) / 2) ∈ ℝ)
271242sselda 3752 . . . . . . . . . . . . 13 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈)) → 𝑦𝑋)
272263fveq1d 6332 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁)))‘𝑦) = ((𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))‘𝑦))
273266fvmpt2 6431 . . . . . . . . . . . . . . . . 17 ((𝑦𝑋 ∧ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)) ∈ V) → ((𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))‘𝑦) = (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))
274265, 273mpan2 671 . . . . . . . . . . . . . . . 16 (𝑦𝑋 → ((𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))‘𝑦) = (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))
275272, 274sylan9eq 2825 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁)))‘𝑦) = (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))
276275fveq2d 6334 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘((𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁)))‘𝑦)) = (abs‘(((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))))
277265a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)) ∈ V)
278223, 228, 277, 262dvmptcl 23935 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)) ∈ ℂ)
279278abscld 14376 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) ∈ ℝ)
28067ad2antrr 705 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑅 / 2) / 2) ∈ ℝ)
281254ffvelrnda 6500 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑆 D (𝐹𝑛))‘𝑦) ∈ ℂ)
282259ffvelrnda 6500 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑆 D (𝐹𝑁))‘𝑦) ∈ ℂ)
283281, 282abssubd 14393 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) = (abs‘(((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦))))
284 ulmdvlem1.1 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → ∀𝑚 ∈ (ℤ𝑁)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑅 / 2) / 2))
285 fveq2 6330 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
286285oveq2d 6807 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = 𝑛 → (𝑆 D (𝐹𝑚)) = (𝑆 D (𝐹𝑛)))
287286fveq1d 6332 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑛 → ((𝑆 D (𝐹𝑚))‘𝑥) = ((𝑆 D (𝐹𝑛))‘𝑥))
288287oveq2d 6807 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 → (((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥)) = (((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥)))
289288fveq2d 6334 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) = (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))))
290289breq1d 4796 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → ((abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑅 / 2) / 2) ↔ (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2)))
291290ralbidv 3135 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑛 → (∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑅 / 2) / 2) ↔ ∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2)))
292291rspccva 3459 . . . . . . . . . . . . . . . . . 18 ((∀𝑚 ∈ (ℤ𝑁)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑅 / 2) / 2) ∧ 𝑛 ∈ (ℤ𝑁)) → ∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2))
293284, 292sylan 569 . . . . . . . . . . . . . . . . 17 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2))
294 fveq2 6330 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ((𝑆 D (𝐹𝑁))‘𝑥) = ((𝑆 D (𝐹𝑁))‘𝑦))
295 fveq2 6330 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ((𝑆 D (𝐹𝑛))‘𝑥) = ((𝑆 D (𝐹𝑛))‘𝑦))
296294, 295oveq12d 6809 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥)) = (((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦)))
297296fveq2d 6334 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) = (abs‘(((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦))))
298297breq1d 4796 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2) ↔ (abs‘(((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦))) < ((𝑅 / 2) / 2)))
299298rspccva 3459 . . . . . . . . . . . . . . . . 17 ((∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦))) < ((𝑅 / 2) / 2))
300293, 299sylan 569 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦))) < ((𝑅 / 2) / 2))
301283, 300eqbrtrd 4808 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) < ((𝑅 / 2) / 2))
302279, 280, 301ltled 10385 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) ≤ ((𝑅 / 2) / 2))
303276, 302eqbrtrd 4808 . . . . . . . . . . . . 13 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘((𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁)))‘𝑦)) ≤ ((𝑅 / 2) / 2))
304271, 303syldan 579 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈)) → (abs‘((𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁)))‘𝑦)) ≤ ((𝑅 / 2) / 2))
305223, 224, 225, 237, 238, 239, 240, 269, 270, 304dvlip2 23971 . . . . . . . . . . 11 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ (𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ∧ 𝐶 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))) → (abs‘((((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝑌) − (((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝐶))) ≤ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
306222, 305mpdan 667 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (abs‘((((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝑌) − (((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝐶))) ≤ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
307200, 306eqbrtrrd 4810 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ≤ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
308307, 175, 1813brtr4d 4818 . . . . . . . 8 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) ≤ ((𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))})‘𝑛))
30978, 82, 166, 172, 178, 183, 308climle 14571 . . . . . . 7 ((𝜑𝜓) → (abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) ≤ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
31075abscld 14376 . . . . . . . 8 ((𝜑𝜓) → (abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ ℝ)
31138, 40absrpcld 14388 . . . . . . . 8 ((𝜑𝜓) → (abs‘(𝑌𝐶)) ∈ ℝ+)
312310, 67, 311ledivmul2d 12122 . . . . . . 7 ((𝜑𝜓) → (((abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) / (abs‘(𝑌𝐶))) ≤ ((𝑅 / 2) / 2) ↔ (abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) ≤ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))))
313309, 312mpbird 247 . . . . . 6 ((𝜑𝜓) → ((abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) / (abs‘(𝑌𝐶))) ≤ ((𝑅 / 2) / 2))
31477, 313eqbrtrd 4808 . . . . 5 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) ≤ ((𝑅 / 2) / 2))
315213rpred 12068 . . . . . . 7 ((𝜑𝜓) → 𝑈 ∈ ℝ)
316 ulmdvlem1.v . . . . . . . 8 ((𝜑𝜓) → 𝑊 ∈ ℝ+)
317316rpred 12068 . . . . . . 7 ((𝜑𝜓) → 𝑊 ∈ ℝ)
318 ulmdvlem1.l . . . . . . 7 ((𝜑𝜓) → 𝑈 < 𝑊)
319167, 315, 317, 208, 318lttrd 10398 . . . . . 6 ((𝜑𝜓) → (abs‘(𝑌𝐶)) < 𝑊)
320 ulmdvlem1.4 . . . . . 6 ((𝜑𝜓) → ((abs‘(𝑌𝐶)) < 𝑊 → (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) < ((𝑅 / 2) / 2)))
321319, 320mpd 15 . . . . 5 ((𝜑𝜓) → (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) < ((𝑅 / 2) / 2))
32261, 63, 67, 67, 314, 321leltaddd 10849 . . . 4 ((𝜑𝜓) → ((abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) + (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)))) < (((𝑅 / 2) / 2) + ((𝑅 / 2) / 2)))
32365recnd 10268 . . . . 5 ((𝜑𝜓) → (𝑅 / 2) ∈ ℂ)
3243232halvesd 11478 . . . 4 ((𝜑𝜓) → (((𝑅 / 2) / 2) + ((𝑅 / 2) / 2)) = (𝑅 / 2))
325322, 324breqtrd 4812 . . 3 ((𝜑𝜓) → ((abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) + (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)))) < (𝑅 / 2))
32650, 64, 65, 66, 325lelttrd 10395 . 2 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) < (𝑅 / 2))
327 ulmdvlem1.2 . 2 ((𝜑𝜓) → (abs‘(((𝑆 D (𝐹𝑁))‘𝐶) − (𝐻𝐶))) < (𝑅 / 2))
32841, 45, 46, 48, 326, 327abs3lemd 14401 1 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − (𝐻𝐶))) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  Vcvv 3351  wss 3723  {csn 4316  {cpr 4318   class class class wbr 4786  cmpt 4863   × cxp 5247  dom cdm 5249  cres 5251  ccom 5253   Fn wfn 6024  wf 6025  cfv 6029  (class class class)co 6791  𝑓 cof 7040  𝑚 cmap 8007  cc 10134  cr 10135   + caddc 10139   · cmul 10141  *cxr 10273   < clt 10274  cle 10275  cmin 10466   / cdiv 10884  2c2 11270  cz 11577  cuz 11886  +crp 12028  abscabs 14175  cli 14416  ∞Metcxmt 19939  ballcbl 19941   D cdv 23840  𝑢culm 24343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-er 7894  df-map 8009  df-pm 8010  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-fi 8471  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12144  df-xadd 12145  df-xmul 12146  df-ioo 12377  df-ico 12379  df-icc 12380  df-fz 12527  df-fzo 12667  df-fl 12794  df-seq 13002  df-exp 13061  df-hash 13315  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-clim 14420  df-rlim 14421  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-starv 16157  df-sca 16158  df-vsca 16159  df-ip 16160  df-tset 16161  df-ple 16162  df-ds 16165  df-unif 16166  df-hom 16167  df-cco 16168  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-fbas 19951  df-fg 19952  df-cnfld 19955  df-top 20912  df-topon 20929  df-topsp 20951  df-bases 20964  df-cld 21037  df-ntr 21038  df-cls 21039  df-nei 21116  df-lp 21154  df-perf 21155  df-cn 21245  df-cnp 21246  df-haus 21333  df-cmp 21404  df-tx 21579  df-hmeo 21772  df-fil 21863  df-fm 21955  df-flim 21956  df-flf 21957  df-xms 22338  df-ms 22339  df-tms 22340  df-cncf 22894  df-limc 23843  df-dv 23844  df-ulm 24344
This theorem is referenced by:  ulmdvlem3  24369
  Copyright terms: Public domain W3C validator