Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmdvlem1 Structured version   Visualization version   GIF version

Theorem ulmdvlem1 24998
 Description: Lemma for ulmdv 25001. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
ulmdv.z 𝑍 = (ℤ𝑀)
ulmdv.s (𝜑𝑆 ∈ {ℝ, ℂ})
ulmdv.m (𝜑𝑀 ∈ ℤ)
ulmdv.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑋))
ulmdv.g (𝜑𝐺:𝑋⟶ℂ)
ulmdv.l ((𝜑𝑧𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
ulmdv.u (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
ulmdvlem1.c ((𝜑𝜓) → 𝐶𝑋)
ulmdvlem1.r ((𝜑𝜓) → 𝑅 ∈ ℝ+)
ulmdvlem1.u ((𝜑𝜓) → 𝑈 ∈ ℝ+)
ulmdvlem1.v ((𝜑𝜓) → 𝑊 ∈ ℝ+)
ulmdvlem1.l ((𝜑𝜓) → 𝑈 < 𝑊)
ulmdvlem1.b ((𝜑𝜓) → (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ⊆ 𝑋)
ulmdvlem1.a ((𝜑𝜓) → (abs‘(𝑌𝐶)) < 𝑈)
ulmdvlem1.n ((𝜑𝜓) → 𝑁𝑍)
ulmdvlem1.1 ((𝜑𝜓) → ∀𝑚 ∈ (ℤ𝑁)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑅 / 2) / 2))
ulmdvlem1.2 ((𝜑𝜓) → (abs‘(((𝑆 D (𝐹𝑁))‘𝐶) − (𝐻𝐶))) < (𝑅 / 2))
ulmdvlem1.y ((𝜑𝜓) → 𝑌𝑋)
ulmdvlem1.3 ((𝜑𝜓) → 𝑌𝐶)
ulmdvlem1.4 ((𝜑𝜓) → ((abs‘(𝑌𝐶)) < 𝑊 → (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) < ((𝑅 / 2) / 2)))
Assertion
Ref Expression
ulmdvlem1 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − (𝐻𝐶))) < 𝑅)
Distinct variable groups:   𝑘,𝑚,𝑥,𝑧,𝐹   𝑧,𝐺   𝑘,𝑁,𝑚,𝑥   𝐶,𝑘,𝑧   𝑧,𝐻   𝑘,𝑀,𝑥   𝜑,𝑘,𝑚,𝑥,𝑧   𝑆,𝑘,𝑚,𝑥,𝑧   𝑅,𝑚,𝑥   𝑘,𝑋,𝑚,𝑥,𝑧   𝑘,𝑌,𝑧   𝑘,𝑍,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑧,𝑘,𝑚)   𝐶(𝑥,𝑚)   𝑅(𝑧,𝑘)   𝑈(𝑥,𝑧,𝑘,𝑚)   𝐺(𝑥,𝑘,𝑚)   𝐻(𝑥,𝑘,𝑚)   𝑀(𝑧,𝑚)   𝑁(𝑧)   𝑊(𝑥,𝑧,𝑘,𝑚)   𝑌(𝑥,𝑚)

Proof of Theorem ulmdvlem1
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmdv.g . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
21adantr 484 . . . . 5 ((𝜑𝜓) → 𝐺:𝑋⟶ℂ)
3 ulmdvlem1.y . . . . 5 ((𝜑𝜓) → 𝑌𝑋)
42, 3ffvelrnd 6833 . . . 4 ((𝜑𝜓) → (𝐺𝑌) ∈ ℂ)
5 ulmdvlem1.c . . . . 5 ((𝜑𝜓) → 𝐶𝑋)
62, 5ffvelrnd 6833 . . . 4 ((𝜑𝜓) → (𝐺𝐶) ∈ ℂ)
74, 6subcld 10990 . . 3 ((𝜑𝜓) → ((𝐺𝑌) − (𝐺𝐶)) ∈ ℂ)
8 ulmdvlem1.n . . . . . . . . . . 11 ((𝜑𝜓) → 𝑁𝑍)
9 fveq2 6649 . . . . . . . . . . . . 13 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
109oveq2d 7155 . . . . . . . . . . . 12 (𝑘 = 𝑁 → (𝑆 D (𝐹𝑘)) = (𝑆 D (𝐹𝑁)))
11 eqid 2801 . . . . . . . . . . . 12 (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) = (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))
12 ovex 7172 . . . . . . . . . . . 12 (𝑆 D (𝐹𝑁)) ∈ V
1310, 11, 12fvmpt 6749 . . . . . . . . . . 11 (𝑁𝑍 → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑁) = (𝑆 D (𝐹𝑁)))
148, 13syl 17 . . . . . . . . . 10 ((𝜑𝜓) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑁) = (𝑆 D (𝐹𝑁)))
15 ovex 7172 . . . . . . . . . . . . . . 15 (𝑆 D (𝐹𝑘)) ∈ V
1615rgenw 3121 . . . . . . . . . . . . . 14 𝑘𝑍 (𝑆 D (𝐹𝑘)) ∈ V
1711fnmpt 6464 . . . . . . . . . . . . . 14 (∀𝑘𝑍 (𝑆 D (𝐹𝑘)) ∈ V → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍)
1816, 17mp1i 13 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍)
19 ulmdv.u . . . . . . . . . . . . 13 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
20 ulmf2 24982 . . . . . . . . . . . . 13 (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍 ∧ (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑m 𝑋))
2118, 19, 20syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑m 𝑋))
2221adantr 484 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑m 𝑋))
2322, 8ffvelrnd 6833 . . . . . . . . . 10 ((𝜑𝜓) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑁) ∈ (ℂ ↑m 𝑋))
2414, 23eqeltrrd 2894 . . . . . . . . 9 ((𝜑𝜓) → (𝑆 D (𝐹𝑁)) ∈ (ℂ ↑m 𝑋))
25 elmapi 8415 . . . . . . . . 9 ((𝑆 D (𝐹𝑁)) ∈ (ℂ ↑m 𝑋) → (𝑆 D (𝐹𝑁)):𝑋⟶ℂ)
2624, 25syl 17 . . . . . . . 8 ((𝜑𝜓) → (𝑆 D (𝐹𝑁)):𝑋⟶ℂ)
2726fdmd 6501 . . . . . . 7 ((𝜑𝜓) → dom (𝑆 D (𝐹𝑁)) = 𝑋)
28 dvbsss 24508 . . . . . . 7 dom (𝑆 D (𝐹𝑁)) ⊆ 𝑆
2927, 28eqsstrrdi 3973 . . . . . 6 ((𝜑𝜓) → 𝑋𝑆)
30 ulmdv.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
31 recnprss 24510 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
3230, 31syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
3332adantr 484 . . . . . 6 ((𝜑𝜓) → 𝑆 ⊆ ℂ)
3429, 33sstrd 3928 . . . . 5 ((𝜑𝜓) → 𝑋 ⊆ ℂ)
3534, 3sseldd 3919 . . . 4 ((𝜑𝜓) → 𝑌 ∈ ℂ)
3634, 5sseldd 3919 . . . 4 ((𝜑𝜓) → 𝐶 ∈ ℂ)
3735, 36subcld 10990 . . 3 ((𝜑𝜓) → (𝑌𝐶) ∈ ℂ)
38 ulmdvlem1.3 . . . 4 ((𝜑𝜓) → 𝑌𝐶)
3935, 36, 38subne0d 10999 . . 3 ((𝜑𝜓) → (𝑌𝐶) ≠ 0)
407, 37, 39divcld 11409 . 2 ((𝜑𝜓) → (((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) ∈ ℂ)
41 ulmcl 24979 . . . . 5 ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻𝐻:𝑋⟶ℂ)
4219, 41syl 17 . . . 4 (𝜑𝐻:𝑋⟶ℂ)
4342adantr 484 . . 3 ((𝜑𝜓) → 𝐻:𝑋⟶ℂ)
4443, 5ffvelrnd 6833 . 2 ((𝜑𝜓) → (𝐻𝐶) ∈ ℂ)
4526, 5ffvelrnd 6833 . 2 ((𝜑𝜓) → ((𝑆 D (𝐹𝑁))‘𝐶) ∈ ℂ)
46 ulmdvlem1.r . . 3 ((𝜑𝜓) → 𝑅 ∈ ℝ+)
4746rpred 12423 . 2 ((𝜑𝜓) → 𝑅 ∈ ℝ)
4840, 45subcld 10990 . . . 4 ((𝜑𝜓) → ((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)) ∈ ℂ)
4948abscld 14791 . . 3 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) ∈ ℝ)
50 ulmdv.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑋))
5150adantr 484 . . . . . . . . . . 11 ((𝜑𝜓) → 𝐹:𝑍⟶(ℂ ↑m 𝑋))
5251, 8ffvelrnd 6833 . . . . . . . . . 10 ((𝜑𝜓) → (𝐹𝑁) ∈ (ℂ ↑m 𝑋))
53 elmapi 8415 . . . . . . . . . 10 ((𝐹𝑁) ∈ (ℂ ↑m 𝑋) → (𝐹𝑁):𝑋⟶ℂ)
5452, 53syl 17 . . . . . . . . 9 ((𝜑𝜓) → (𝐹𝑁):𝑋⟶ℂ)
5554, 3ffvelrnd 6833 . . . . . . . 8 ((𝜑𝜓) → ((𝐹𝑁)‘𝑌) ∈ ℂ)
5654, 5ffvelrnd 6833 . . . . . . . 8 ((𝜑𝜓) → ((𝐹𝑁)‘𝐶) ∈ ℂ)
5755, 56subcld 10990 . . . . . . 7 ((𝜑𝜓) → (((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) ∈ ℂ)
5857, 37, 39divcld 11409 . . . . . 6 ((𝜑𝜓) → ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) ∈ ℂ)
5940, 58subcld 10990 . . . . 5 ((𝜑𝜓) → ((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶))) ∈ ℂ)
6059abscld 14791 . . . 4 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) ∈ ℝ)
6158, 45subcld 10990 . . . . 5 ((𝜑𝜓) → (((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)) ∈ ℂ)
6261abscld 14791 . . . 4 ((𝜑𝜓) → (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) ∈ ℝ)
6360, 62readdcld 10663 . . 3 ((𝜑𝜓) → ((abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) + (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)))) ∈ ℝ)
6447rehalfcld 11876 . . 3 ((𝜑𝜓) → (𝑅 / 2) ∈ ℝ)
6540, 45, 58abs3difd 14815 . . 3 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) ≤ ((abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) + (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)))))
6664rehalfcld 11876 . . . . 5 ((𝜑𝜓) → ((𝑅 / 2) / 2) ∈ ℝ)
674, 55, 6, 56sub4d 11039 . . . . . . . . . 10 ((𝜑𝜓) → (((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) = (((𝐺𝑌) − (𝐺𝐶)) − (((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶))))
6867oveq1d 7154 . . . . . . . . 9 ((𝜑𝜓) → ((((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶)) = ((((𝐺𝑌) − (𝐺𝐶)) − (((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶)))
697, 57, 37, 39divsubdird 11448 . . . . . . . . 9 ((𝜑𝜓) → ((((𝐺𝑌) − (𝐺𝐶)) − (((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶)) = ((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶))))
7068, 69eqtrd 2836 . . . . . . . 8 ((𝜑𝜓) → ((((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶)) = ((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶))))
7170fveq2d 6653 . . . . . . 7 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶))) = (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))))
724, 55subcld 10990 . . . . . . . . 9 ((𝜑𝜓) → ((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) ∈ ℂ)
736, 56subcld 10990 . . . . . . . . 9 ((𝜑𝜓) → ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)) ∈ ℂ)
7472, 73subcld 10990 . . . . . . . 8 ((𝜑𝜓) → (((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) ∈ ℂ)
7574, 37, 39absdivd 14810 . . . . . . 7 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶))) = ((abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) / (abs‘(𝑌𝐶))))
7671, 75eqtr3d 2838 . . . . . 6 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) = ((abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) / (abs‘(𝑌𝐶))))
77 eqid 2801 . . . . . . . 8 (ℤ𝑁) = (ℤ𝑁)
78 ulmdv.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
798, 78eleqtrdi 2903 . . . . . . . . 9 ((𝜑𝜓) → 𝑁 ∈ (ℤ𝑀))
80 eluzelz 12245 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
8179, 80syl 17 . . . . . . . 8 ((𝜑𝜓) → 𝑁 ∈ ℤ)
82 ulmdv.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
8382adantr 484 . . . . . . . . . 10 ((𝜑𝜓) → 𝑀 ∈ ℤ)
84 fveq2 6649 . . . . . . . . . . . . . 14 (𝑧 = 𝑌 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑌))
8584mpteq2dv 5129 . . . . . . . . . . . . 13 (𝑧 = 𝑌 → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌)))
86 fveq2 6649 . . . . . . . . . . . . 13 (𝑧 = 𝑌 → (𝐺𝑧) = (𝐺𝑌))
8785, 86breq12d 5046 . . . . . . . . . . . 12 (𝑧 = 𝑌 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧) ↔ (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌)) ⇝ (𝐺𝑌)))
88 ulmdv.l . . . . . . . . . . . . . 14 ((𝜑𝑧𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
8988ralrimiva 3152 . . . . . . . . . . . . 13 (𝜑 → ∀𝑧𝑋 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
9089adantr 484 . . . . . . . . . . . 12 ((𝜑𝜓) → ∀𝑧𝑋 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
9187, 90, 3rspcdva 3576 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌)) ⇝ (𝐺𝑌))
9278fvexi 6663 . . . . . . . . . . . . 13 𝑍 ∈ V
9392mptex 6967 . . . . . . . . . . . 12 (𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌))) ∈ V
9493a1i 11 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌))) ∈ V)
95 fveq2 6649 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
9695fveq1d 6651 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹𝑘)‘𝑌) = ((𝐹𝑛)‘𝑌))
97 eqid 2801 . . . . . . . . . . . . . 14 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))
98 fvex 6662 . . . . . . . . . . . . . 14 ((𝐹𝑛)‘𝑌) ∈ V
9996, 97, 98fvmpt 6749 . . . . . . . . . . . . 13 (𝑛𝑍 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))‘𝑛) = ((𝐹𝑛)‘𝑌))
10099adantl 485 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))‘𝑛) = ((𝐹𝑛)‘𝑌))
10151ffvelrnda 6832 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑m 𝑋))
102 elmapi 8415 . . . . . . . . . . . . . 14 ((𝐹𝑛) ∈ (ℂ ↑m 𝑋) → (𝐹𝑛):𝑋⟶ℂ)
103101, 102syl 17 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛𝑍) → (𝐹𝑛):𝑋⟶ℂ)
1043adantr 484 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛𝑍) → 𝑌𝑋)
105103, 104ffvelrnd 6833 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑌) ∈ ℂ)
106100, 105eqeltrd 2893 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))‘𝑛) ∈ ℂ)
10796oveq1d 7154 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
108 eqid 2801 . . . . . . . . . . . . . 14 (𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌))) = (𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))
109 ovex 7172 . . . . . . . . . . . . . 14 (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) ∈ V
110107, 108, 109fvmpt 6749 . . . . . . . . . . . . 13 (𝑛𝑍 → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
111110adantl 485 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
112100oveq1d 7154 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → (((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))‘𝑛) − ((𝐹𝑁)‘𝑌)) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
113111, 112eqtr4d 2839 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) = (((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))‘𝑛) − ((𝐹𝑁)‘𝑌)))
11478, 83, 91, 55, 94, 106, 113climsubc1 14989 . . . . . . . . . 10 ((𝜑𝜓) → (𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌))) ⇝ ((𝐺𝑌) − ((𝐹𝑁)‘𝑌)))
11592mptex 6967 . . . . . . . . . . 11 (𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ V
116115a1i 11 . . . . . . . . . 10 ((𝜑𝜓) → (𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ V)
117 fveq2 6649 . . . . . . . . . . . . . 14 (𝑧 = 𝐶 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝐶))
118117mpteq2dv 5129 . . . . . . . . . . . . 13 (𝑧 = 𝐶 → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶)))
119 fveq2 6649 . . . . . . . . . . . . 13 (𝑧 = 𝐶 → (𝐺𝑧) = (𝐺𝐶))
120118, 119breq12d 5046 . . . . . . . . . . . 12 (𝑧 = 𝐶 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧) ↔ (𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶)) ⇝ (𝐺𝐶)))
121120, 90, 5rspcdva 3576 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶)) ⇝ (𝐺𝐶))
12292mptex 6967 . . . . . . . . . . . 12 (𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))) ∈ V
123122a1i 11 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))) ∈ V)
12495fveq1d 6651 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹𝑘)‘𝐶) = ((𝐹𝑛)‘𝐶))
125 eqid 2801 . . . . . . . . . . . . . 14 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))
126 fvex 6662 . . . . . . . . . . . . . 14 ((𝐹𝑛)‘𝐶) ∈ V
127124, 125, 126fvmpt 6749 . . . . . . . . . . . . 13 (𝑛𝑍 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))‘𝑛) = ((𝐹𝑛)‘𝐶))
128127adantl 485 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))‘𝑛) = ((𝐹𝑛)‘𝐶))
1295adantr 484 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛𝑍) → 𝐶𝑋)
130103, 129ffvelrnd 6833 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝐶) ∈ ℂ)
131128, 130eqeltrd 2893 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))‘𝑛) ∈ ℂ)
132124oveq1d 7154 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
133 eqid 2801 . . . . . . . . . . . . . 14 (𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))) = (𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))
134 ovex 7172 . . . . . . . . . . . . . 14 (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)) ∈ V
135132, 133, 134fvmpt 6749 . . . . . . . . . . . . 13 (𝑛𝑍 → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
136135adantl 485 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
137128oveq1d 7154 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → (((𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))‘𝑛) − ((𝐹𝑁)‘𝐶)) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
138136, 137eqtr4d 2839 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛) = (((𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))‘𝑛) − ((𝐹𝑁)‘𝐶)))
13978, 83, 121, 56, 123, 131, 138climsubc1 14989 . . . . . . . . . 10 ((𝜑𝜓) → (𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))) ⇝ ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))
14055adantr 484 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝐹𝑁)‘𝑌) ∈ ℂ)
141105, 140subcld 10990 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) ∈ ℂ)
142111, 141eqeltrd 2893 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) ∈ ℂ)
14356adantr 484 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝐹𝑁)‘𝐶) ∈ ℂ)
144130, 143subcld 10990 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)) ∈ ℂ)
145136, 144eqeltrd 2893 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛) ∈ ℂ)
146107, 132oveq12d 7157 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))) = ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))))
147 eqid 2801 . . . . . . . . . . . . 13 (𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))) = (𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))
148 ovex 7172 . . . . . . . . . . . . 13 ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))) ∈ V
149146, 147, 148fvmpt 6749 . . . . . . . . . . . 12 (𝑛𝑍 → ((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛) = ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))))
150149adantl 485 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛) = ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))))
151111, 136oveq12d 7157 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → (((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) − ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛)) = ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))))
152150, 151eqtr4d 2839 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛) = (((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) − ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛)))
15378, 83, 114, 116, 139, 142, 145, 152climsub 14985 . . . . . . . . 9 ((𝜑𝜓) → (𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ⇝ (((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))))
15492mptex 6967 . . . . . . . . . 10 (𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))) ∈ V
155154a1i 11 . . . . . . . . 9 ((𝜑𝜓) → (𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))) ∈ V)
156141, 144subcld 10990 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))) ∈ ℂ)
157150, 156eqeltrd 2893 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛) ∈ ℂ)
158146fveq2d 6653 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
159 eqid 2801 . . . . . . . . . . . 12 (𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))) = (𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
160 fvex 6662 . . . . . . . . . . . 12 (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ V
161158, 159, 160fvmpt 6749 . . . . . . . . . . 11 (𝑛𝑍 → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
162161adantl 485 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
163150fveq2d 6653 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → (abs‘((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛)) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
164162, 163eqtr4d 2839 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) = (abs‘((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛)))
16578, 153, 155, 83, 157, 164climabs 14955 . . . . . . . 8 ((𝜑𝜓) → (𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))) ⇝ (abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))))
16637abscld 14791 . . . . . . . . . . 11 ((𝜑𝜓) → (abs‘(𝑌𝐶)) ∈ ℝ)
16766, 166remulcld 10664 . . . . . . . . . 10 ((𝜑𝜓) → (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))) ∈ ℝ)
168167recnd 10662 . . . . . . . . 9 ((𝜑𝜓) → (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))) ∈ ℂ)
16978eqimss2i 3977 . . . . . . . . . 10 (ℤ𝑀) ⊆ 𝑍
170169, 92climconst2 14900 . . . . . . . . 9 (((((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))) ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))}) ⇝ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
171168, 83, 170syl2anc 587 . . . . . . . 8 ((𝜑𝜓) → (𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))}) ⇝ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
17278uztrn2 12254 . . . . . . . . . . 11 ((𝑁𝑍𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
1738, 172sylan 583 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
174173, 161syl 17 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
175156abscld 14791 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ ℝ)
176173, 175syldan 594 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ ℝ)
177174, 176eqeltrd 2893 . . . . . . . 8 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) ∈ ℝ)
178 ovex 7172 . . . . . . . . . . 11 (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))) ∈ V
179178fvconst2 6947 . . . . . . . . . 10 (𝑛𝑍 → ((𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))})‘𝑛) = (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
180173, 179syl 17 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))})‘𝑛) = (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
181167adantr 484 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))) ∈ ℝ)
182180, 181eqeltrd 2893 . . . . . . . 8 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))})‘𝑛) ∈ ℝ)
183173, 103syldan 594 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑛):𝑋⟶ℂ)
184183ffnd 6492 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑛) Fn 𝑋)
18554adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑁):𝑋⟶ℂ)
186185ffnd 6492 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑁) Fn 𝑋)
187 ulmscl 24977 . . . . . . . . . . . . . . 15 ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻𝑋 ∈ V)
18819, 187syl 17 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ V)
189188ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ V)
1903adantr 484 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑌𝑋)
191 fnfvof 7407 . . . . . . . . . . . . 13 ((((𝐹𝑛) Fn 𝑋 ∧ (𝐹𝑁) Fn 𝑋) ∧ (𝑋 ∈ V ∧ 𝑌𝑋)) → (((𝐹𝑛) ∘f − (𝐹𝑁))‘𝑌) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
192184, 186, 189, 190, 191syl22anc 837 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (((𝐹𝑛) ∘f − (𝐹𝑁))‘𝑌) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
1935adantr 484 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝐶𝑋)
194 fnfvof 7407 . . . . . . . . . . . . 13 ((((𝐹𝑛) Fn 𝑋 ∧ (𝐹𝑁) Fn 𝑋) ∧ (𝑋 ∈ V ∧ 𝐶𝑋)) → (((𝐹𝑛) ∘f − (𝐹𝑁))‘𝐶) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
195184, 186, 189, 193, 194syl22anc 837 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (((𝐹𝑛) ∘f − (𝐹𝑁))‘𝐶) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
196192, 195oveq12d 7157 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((((𝐹𝑛) ∘f − (𝐹𝑁))‘𝑌) − (((𝐹𝑛) ∘f − (𝐹𝑁))‘𝐶)) = ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))))
197196fveq2d 6653 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (abs‘((((𝐹𝑛) ∘f − (𝐹𝑁))‘𝑌) − (((𝐹𝑛) ∘f − (𝐹𝑁))‘𝐶))) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
19829, 3sseldd 3919 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → 𝑌𝑆)
19929, 5sseldd 3919 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → 𝐶𝑆)
200198, 199ovresd 7299 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → (𝑌((abs ∘ − ) ↾ (𝑆 × 𝑆))𝐶) = (𝑌(abs ∘ − )𝐶))
201 eqid 2801 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
202201cnmetdval 23379 . . . . . . . . . . . . . . . . 17 ((𝑌 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑌(abs ∘ − )𝐶) = (abs‘(𝑌𝐶)))
20335, 36, 202syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → (𝑌(abs ∘ − )𝐶) = (abs‘(𝑌𝐶)))
204200, 203eqtrd 2836 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → (𝑌((abs ∘ − ) ↾ (𝑆 × 𝑆))𝐶) = (abs‘(𝑌𝐶)))
205 ulmdvlem1.a . . . . . . . . . . . . . . 15 ((𝜑𝜓) → (abs‘(𝑌𝐶)) < 𝑈)
206204, 205eqbrtrd 5055 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝑌((abs ∘ − ) ↾ (𝑆 × 𝑆))𝐶) < 𝑈)
207 cnxmet 23381 . . . . . . . . . . . . . . . 16 (abs ∘ − ) ∈ (∞Met‘ℂ)
208 xmetres2 22971 . . . . . . . . . . . . . . . 16 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
209207, 33, 208sylancr 590 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
210 ulmdvlem1.u . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 𝑈 ∈ ℝ+)
211210rpxrd 12424 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝑈 ∈ ℝ*)
212 elbl3 23002 . . . . . . . . . . . . . . 15 (((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝑈 ∈ ℝ*) ∧ (𝐶𝑆𝑌𝑆)) → (𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ↔ (𝑌((abs ∘ − ) ↾ (𝑆 × 𝑆))𝐶) < 𝑈))
213209, 211, 199, 198, 212syl22anc 837 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ↔ (𝑌((abs ∘ − ) ↾ (𝑆 × 𝑆))𝐶) < 𝑈))
214206, 213mpbird 260 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))
215214adantr 484 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))
216 blcntr 23023 . . . . . . . . . . . . . 14 ((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝐶𝑆𝑈 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))
217209, 199, 210, 216syl3anc 1368 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝐶 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))
218217adantr 484 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝐶 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))
219215, 218jca 515 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ∧ 𝐶 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈)))
22030ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑆 ∈ {ℝ, ℂ})
221 eqid 2801 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
22229adantr 484 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑋𝑆)
223 fvexd 6664 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝐹𝑛)‘𝑦) ∈ V)
224 fvexd 6664 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝐹𝑁)‘𝑦) ∈ V)
225183feqmptd 6712 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑛) = (𝑦𝑋 ↦ ((𝐹𝑛)‘𝑦)))
226185feqmptd 6712 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑁) = (𝑦𝑋 ↦ ((𝐹𝑁)‘𝑦)))
227189, 223, 224, 225, 226offval2 7410 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝐹𝑛) ∘f − (𝐹𝑁)) = (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦))))
228183ffvelrnda 6832 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝐹𝑛)‘𝑦) ∈ ℂ)
229185ffvelrnda 6832 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝐹𝑁)‘𝑦) ∈ ℂ)
230228, 229subcld 10990 . . . . . . . . . . . . 13 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦)) ∈ ℂ)
231227, 230fmpt3d 6861 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝐹𝑛) ∘f − (𝐹𝑁)):𝑋⟶ℂ)
232199adantr 484 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝐶𝑆)
233211adantr 484 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑈 ∈ ℝ*)
234 eqid 2801 . . . . . . . . . . . 12 (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) = (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈)
235 ulmdvlem1.b . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ⊆ 𝑋)
236235adantr 484 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ⊆ 𝑋)
237227oveq2d 7155 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D ((𝐹𝑛) ∘f − (𝐹𝑁))) = (𝑆 D (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦)))))
238 fvexd 6664 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑆 D (𝐹𝑛))‘𝑦) ∈ V)
239225oveq2d 7155 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑛)) = (𝑆 D (𝑦𝑋 ↦ ((𝐹𝑛)‘𝑦))))
24095oveq2d 7155 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑛 → (𝑆 D (𝐹𝑘)) = (𝑆 D (𝐹𝑛)))
241 ovex 7172 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 D (𝐹𝑛)) ∈ V
242240, 11, 241fvmpt 6749 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑍 → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) = (𝑆 D (𝐹𝑛)))
243173, 242syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) = (𝑆 D (𝐹𝑛)))
24421ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑m 𝑋))
245244, 173ffvelrnd 6833 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) ∈ (ℂ ↑m 𝑋))
246243, 245eqeltrrd 2894 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑛)) ∈ (ℂ ↑m 𝑋))
247 elmapi 8415 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 D (𝐹𝑛)) ∈ (ℂ ↑m 𝑋) → (𝑆 D (𝐹𝑛)):𝑋⟶ℂ)
248246, 247syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑛)):𝑋⟶ℂ)
249248feqmptd 6712 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑛)) = (𝑦𝑋 ↦ ((𝑆 D (𝐹𝑛))‘𝑦)))
250239, 249eqtr3d 2838 . . . . . . . . . . . . . . . . 17 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝑦𝑋 ↦ ((𝐹𝑛)‘𝑦))) = (𝑦𝑋 ↦ ((𝑆 D (𝐹𝑛))‘𝑦)))
251 fvexd 6664 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑆 D (𝐹𝑁))‘𝑦) ∈ V)
252226oveq2d 7155 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑁)) = (𝑆 D (𝑦𝑋 ↦ ((𝐹𝑁)‘𝑦))))
25326adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑁)):𝑋⟶ℂ)
254253feqmptd 6712 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑁)) = (𝑦𝑋 ↦ ((𝑆 D (𝐹𝑁))‘𝑦)))
255252, 254eqtr3d 2838 . . . . . . . . . . . . . . . . 17 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝑦𝑋 ↦ ((𝐹𝑁)‘𝑦))) = (𝑦𝑋 ↦ ((𝑆 D (𝐹𝑁))‘𝑦)))
256220, 228, 238, 250, 229, 251, 255dvmptsub 24573 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦)))) = (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))))
257237, 256eqtrd 2836 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D ((𝐹𝑛) ∘f − (𝐹𝑁))) = (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))))
258257dmeqd 5742 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → dom (𝑆 D ((𝐹𝑛) ∘f − (𝐹𝑁))) = dom (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))))
259 ovex 7172 . . . . . . . . . . . . . . 15 (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)) ∈ V
260 eqid 2801 . . . . . . . . . . . . . . 15 (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) = (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))
261259, 260dmmpti 6468 . . . . . . . . . . . . . 14 dom (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) = 𝑋
262258, 261eqtrdi 2852 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → dom (𝑆 D ((𝐹𝑛) ∘f − (𝐹𝑁))) = 𝑋)
263236, 262sseqtrrd 3959 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ⊆ dom (𝑆 D ((𝐹𝑛) ∘f − (𝐹𝑁))))
26466adantr 484 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑅 / 2) / 2) ∈ ℝ)
265236sselda 3918 . . . . . . . . . . . . 13 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈)) → 𝑦𝑋)
266257fveq1d 6651 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑆 D ((𝐹𝑛) ∘f − (𝐹𝑁)))‘𝑦) = ((𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))‘𝑦))
267260fvmpt2 6760 . . . . . . . . . . . . . . . . 17 ((𝑦𝑋 ∧ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)) ∈ V) → ((𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))‘𝑦) = (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))
268259, 267mpan2 690 . . . . . . . . . . . . . . . 16 (𝑦𝑋 → ((𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))‘𝑦) = (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))
269266, 268sylan9eq 2856 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑆 D ((𝐹𝑛) ∘f − (𝐹𝑁)))‘𝑦) = (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))
270269fveq2d 6653 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘((𝑆 D ((𝐹𝑛) ∘f − (𝐹𝑁)))‘𝑦)) = (abs‘(((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))))
271259a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)) ∈ V)
272220, 230, 271, 256dvmptcl 24565 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)) ∈ ℂ)
273272abscld 14791 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) ∈ ℝ)
27466ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑅 / 2) / 2) ∈ ℝ)
275248ffvelrnda 6832 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑆 D (𝐹𝑛))‘𝑦) ∈ ℂ)
276253ffvelrnda 6832 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑆 D (𝐹𝑁))‘𝑦) ∈ ℂ)
277275, 276abssubd 14808 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) = (abs‘(((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦))))
278 ulmdvlem1.1 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → ∀𝑚 ∈ (ℤ𝑁)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑅 / 2) / 2))
279 fveq2 6649 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
280279oveq2d 7155 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = 𝑛 → (𝑆 D (𝐹𝑚)) = (𝑆 D (𝐹𝑛)))
281280fveq1d 6651 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑛 → ((𝑆 D (𝐹𝑚))‘𝑥) = ((𝑆 D (𝐹𝑛))‘𝑥))
282281oveq2d 7155 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 → (((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥)) = (((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥)))
283282fveq2d 6653 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) = (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))))
284283breq1d 5043 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → ((abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑅 / 2) / 2) ↔ (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2)))
285284ralbidv 3165 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑛 → (∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑅 / 2) / 2) ↔ ∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2)))
286285rspccva 3573 . . . . . . . . . . . . . . . . . 18 ((∀𝑚 ∈ (ℤ𝑁)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑅 / 2) / 2) ∧ 𝑛 ∈ (ℤ𝑁)) → ∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2))
287278, 286sylan 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2))
288 fveq2 6649 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ((𝑆 D (𝐹𝑁))‘𝑥) = ((𝑆 D (𝐹𝑁))‘𝑦))
289 fveq2 6649 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ((𝑆 D (𝐹𝑛))‘𝑥) = ((𝑆 D (𝐹𝑛))‘𝑦))
290288, 289oveq12d 7157 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥)) = (((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦)))
291290fveq2d 6653 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) = (abs‘(((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦))))
292291breq1d 5043 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2) ↔ (abs‘(((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦))) < ((𝑅 / 2) / 2)))
293292rspccva 3573 . . . . . . . . . . . . . . . . 17 ((∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦))) < ((𝑅 / 2) / 2))
294287, 293sylan 583 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦))) < ((𝑅 / 2) / 2))
295277, 294eqbrtrd 5055 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) < ((𝑅 / 2) / 2))
296273, 274, 295ltled 10781 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) ≤ ((𝑅 / 2) / 2))
297270, 296eqbrtrd 5055 . . . . . . . . . . . . 13 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘((𝑆 D ((𝐹𝑛) ∘f − (𝐹𝑁)))‘𝑦)) ≤ ((𝑅 / 2) / 2))
298265, 297syldan 594 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈)) → (abs‘((𝑆 D ((𝐹𝑛) ∘f − (𝐹𝑁)))‘𝑦)) ≤ ((𝑅 / 2) / 2))
299220, 221, 222, 231, 232, 233, 234, 263, 264, 298dvlip2 24601 . . . . . . . . . . 11 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ (𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ∧ 𝐶 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))) → (abs‘((((𝐹𝑛) ∘f − (𝐹𝑁))‘𝑌) − (((𝐹𝑛) ∘f − (𝐹𝑁))‘𝐶))) ≤ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
300219, 299mpdan 686 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (abs‘((((𝐹𝑛) ∘f − (𝐹𝑁))‘𝑌) − (((𝐹𝑛) ∘f − (𝐹𝑁))‘𝐶))) ≤ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
301197, 300eqbrtrrd 5057 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ≤ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
302301, 174, 1803brtr4d 5065 . . . . . . . 8 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) ≤ ((𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))})‘𝑛))
30377, 81, 165, 171, 177, 182, 302climle 14991 . . . . . . 7 ((𝜑𝜓) → (abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) ≤ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
30474abscld 14791 . . . . . . . 8 ((𝜑𝜓) → (abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ ℝ)
30537, 39absrpcld 14803 . . . . . . . 8 ((𝜑𝜓) → (abs‘(𝑌𝐶)) ∈ ℝ+)
306304, 66, 305ledivmul2d 12477 . . . . . . 7 ((𝜑𝜓) → (((abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) / (abs‘(𝑌𝐶))) ≤ ((𝑅 / 2) / 2) ↔ (abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) ≤ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))))
307303, 306mpbird 260 . . . . . 6 ((𝜑𝜓) → ((abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) / (abs‘(𝑌𝐶))) ≤ ((𝑅 / 2) / 2))
30876, 307eqbrtrd 5055 . . . . 5 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) ≤ ((𝑅 / 2) / 2))
309210rpred 12423 . . . . . . 7 ((𝜑𝜓) → 𝑈 ∈ ℝ)
310 ulmdvlem1.v . . . . . . . 8 ((𝜑𝜓) → 𝑊 ∈ ℝ+)
311310rpred 12423 . . . . . . 7 ((𝜑𝜓) → 𝑊 ∈ ℝ)
312 ulmdvlem1.l . . . . . . 7 ((𝜑𝜓) → 𝑈 < 𝑊)
313166, 309, 311, 205, 312lttrd 10794 . . . . . 6 ((𝜑𝜓) → (abs‘(𝑌𝐶)) < 𝑊)
314 ulmdvlem1.4 . . . . . 6 ((𝜑𝜓) → ((abs‘(𝑌𝐶)) < 𝑊 → (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) < ((𝑅 / 2) / 2)))
315313, 314mpd 15 . . . . 5 ((𝜑𝜓) → (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) < ((𝑅 / 2) / 2))
31660, 62, 66, 66, 308, 315leltaddd 11255 . . . 4 ((𝜑𝜓) → ((abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) + (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)))) < (((𝑅 / 2) / 2) + ((𝑅 / 2) / 2)))
31764recnd 10662 . . . . 5 ((𝜑𝜓) → (𝑅 / 2) ∈ ℂ)
3183172halvesd 11875 . . . 4 ((𝜑𝜓) → (((𝑅 / 2) / 2) + ((𝑅 / 2) / 2)) = (𝑅 / 2))
319316, 318breqtrd 5059 . . 3 ((𝜑𝜓) → ((abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) + (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)))) < (𝑅 / 2))
32049, 63, 64, 65, 319lelttrd 10791 . 2 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) < (𝑅 / 2))
321 ulmdvlem1.2 . 2 ((𝜑𝜓) → (abs‘(((𝑆 D (𝐹𝑁))‘𝐶) − (𝐻𝐶))) < (𝑅 / 2))
32240, 44, 45, 47, 320, 321abs3lemd 14816 1 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − (𝐻𝐶))) < 𝑅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109  Vcvv 3444   ⊆ wss 3884  {csn 4528  {cpr 4530   class class class wbr 5033   ↦ cmpt 5113   × cxp 5521  dom cdm 5523   ↾ cres 5525   ∘ ccom 5527   Fn wfn 6323  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139   ∘f cof 7391   ↑m cmap 8393  ℂcc 10528  ℝcr 10529   + caddc 10533   · cmul 10535  ℝ*cxr 10667   < clt 10668   ≤ cle 10669   − cmin 10863   / cdiv 11290  2c2 11684  ℤcz 11973  ℤ≥cuz 12235  ℝ+crp 12381  abscabs 14588   ⇝ cli 14836  ∞Metcxmet 20079  ballcbl 20081   D cdv 24469  ⇝𝑢culm 24974 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-rlim 14841  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18220  df-cntz 18442  df-cmn 18903  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-cnfld 20095  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24472  df-dv 24473  df-ulm 24975 This theorem is referenced by:  ulmdvlem3  25000
 Copyright terms: Public domain W3C validator