MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblulm Structured version   Visualization version   GIF version

Theorem iblulm 26464
Description: A uniform limit of integrable functions is integrable. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
itgulm.z 𝑍 = (ℤ𝑀)
itgulm.m (𝜑𝑀 ∈ ℤ)
itgulm.f (𝜑𝐹:𝑍⟶𝐿1)
itgulm.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
itgulm.s (𝜑 → (vol‘𝑆) ∈ ℝ)
Assertion
Ref Expression
iblulm (𝜑𝐺 ∈ 𝐿1)

Proof of Theorem iblulm
Dummy variables 𝑗 𝑘 𝑟 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm.z . . . 4 𝑍 = (ℤ𝑀)
2 itgulm.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 itgulm.f . . . . . 6 (𝜑𝐹:𝑍⟶𝐿1)
43ffnd 6737 . . . . 5 (𝜑𝐹 Fn 𝑍)
5 itgulm.u . . . . 5 (𝜑𝐹(⇝𝑢𝑆)𝐺)
6 ulmf2 26441 . . . . 5 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
74, 5, 6syl2anc 584 . . . 4 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
8 eqidd 2735 . . . 4 ((𝜑 ∧ (𝑘𝑍𝑥𝑆)) → ((𝐹𝑘)‘𝑥) = ((𝐹𝑘)‘𝑥))
9 eqidd 2735 . . . 4 ((𝜑𝑥𝑆) → (𝐺𝑥) = (𝐺𝑥))
10 1rp 13035 . . . . 5 1 ∈ ℝ+
1110a1i 11 . . . 4 (𝜑 → 1 ∈ ℝ+)
121, 2, 7, 8, 9, 5, 11ulmi 26443 . . 3 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)
131r19.2uz 15386 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1 → ∃𝑘𝑍𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)
1412, 13syl 17 . 2 (𝜑 → ∃𝑘𝑍𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)
15 ulmcl 26438 . . . . . . 7 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
165, 15syl 17 . . . . . 6 (𝜑𝐺:𝑆⟶ℂ)
1716adantr 480 . . . . 5 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → 𝐺:𝑆⟶ℂ)
1817feqmptd 6976 . . . 4 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → 𝐺 = (𝑧𝑆 ↦ (𝐺𝑧)))
197ffvelcdmda 7103 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
20 elmapi 8887 . . . . . . . . 9 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2119, 20syl 17 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘):𝑆⟶ℂ)
2221adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝐹𝑘):𝑆⟶ℂ)
2322ffvelcdmda 7103 . . . . . 6 (((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
2417ffvelcdmda 7103 . . . . . 6 (((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) ∧ 𝑧𝑆) → (𝐺𝑧) ∈ ℂ)
2523, 24nncand 11622 . . . . 5 (((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) ∧ 𝑧𝑆) → (((𝐹𝑘)‘𝑧) − (((𝐹𝑘)‘𝑧) − (𝐺𝑧))) = (𝐺𝑧))
2625mpteq2dva 5247 . . . 4 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))) = (𝑧𝑆 ↦ (𝐺𝑧)))
2718, 26eqtr4d 2777 . . 3 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → 𝐺 = (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))))
2822feqmptd 6976 . . . . 5 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝐹𝑘) = (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)))
293ffvelcdmda 7103 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝐿1)
3029adantrr 717 . . . . 5 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝐹𝑘) ∈ 𝐿1)
3128, 30eqeltrrd 2839 . . . 4 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)) ∈ 𝐿1)
3223, 24subcld 11617 . . . 4 (((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) ∧ 𝑧𝑆) → (((𝐹𝑘)‘𝑧) − (𝐺𝑧)) ∈ ℂ)
33 ulmscl 26436 . . . . . . . . 9 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
345, 33syl 17 . . . . . . . 8 (𝜑𝑆 ∈ V)
3534adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → 𝑆 ∈ V)
3635, 23, 24, 28, 18offval2 7716 . . . . . 6 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → ((𝐹𝑘) ∘f𝐺) = (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧))))
37 iblmbf 25816 . . . . . . . 8 ((𝐹𝑘) ∈ 𝐿1 → (𝐹𝑘) ∈ MblFn)
3830, 37syl 17 . . . . . . 7 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝐹𝑘) ∈ MblFn)
39 iblmbf 25816 . . . . . . . . . . 11 (𝑥 ∈ 𝐿1𝑥 ∈ MblFn)
4039ssriv 3998 . . . . . . . . . 10 𝐿1 ⊆ MblFn
41 fss 6752 . . . . . . . . . 10 ((𝐹:𝑍⟶𝐿1 ∧ 𝐿1 ⊆ MblFn) → 𝐹:𝑍⟶MblFn)
423, 40, 41sylancl 586 . . . . . . . . 9 (𝜑𝐹:𝑍⟶MblFn)
431, 2, 42, 5mbfulm 26463 . . . . . . . 8 (𝜑𝐺 ∈ MblFn)
4443adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → 𝐺 ∈ MblFn)
4538, 44mbfsub 25710 . . . . . 6 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → ((𝐹𝑘) ∘f𝐺) ∈ MblFn)
4636, 45eqeltrrd 2839 . . . . 5 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧))) ∈ MblFn)
47 eqid 2734 . . . . . . . 8 (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧))) = (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))
4847, 32dmmptd 6713 . . . . . . 7 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧))) = 𝑆)
4948fveq2d 6910 . . . . . 6 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (vol‘dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))) = (vol‘𝑆))
50 itgulm.s . . . . . . 7 (𝜑 → (vol‘𝑆) ∈ ℝ)
5150adantr 480 . . . . . 6 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (vol‘𝑆) ∈ ℝ)
5249, 51eqeltrd 2838 . . . . 5 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (vol‘dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))) ∈ ℝ)
53 1re 11258 . . . . . 6 1 ∈ ℝ
5421ffvelcdmda 7103 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((𝐹𝑘)‘𝑥) ∈ ℂ)
5516adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → 𝐺:𝑆⟶ℂ)
5655ffvelcdmda 7103 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (𝐺𝑥) ∈ ℂ)
5754, 56subcld 11617 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (((𝐹𝑘)‘𝑥) − (𝐺𝑥)) ∈ ℂ)
5857abscld 15471 . . . . . . . . . . 11 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℝ)
59 ltle 11346 . . . . . . . . . . 11 (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1 → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ≤ 1))
6058, 53, 59sylancl 586 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1 → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ≤ 1))
61 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑥))
62 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
6361, 62oveq12d 7448 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (((𝐹𝑘)‘𝑧) − (𝐺𝑧)) = (((𝐹𝑘)‘𝑥) − (𝐺𝑥)))
64 ovex 7463 . . . . . . . . . . . . . 14 (((𝐹𝑘)‘𝑥) − (𝐺𝑥)) ∈ V
6563, 47, 64fvmpt 7015 . . . . . . . . . . . . 13 (𝑥𝑆 → ((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥) = (((𝐹𝑘)‘𝑥) − (𝐺𝑥)))
6665adantl 481 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥) = (((𝐹𝑘)‘𝑥) − (𝐺𝑥)))
6766fveq2d 6910 . . . . . . . . . . 11 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) = (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))))
6867breq1d 5157 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 1 ↔ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ≤ 1))
6960, 68sylibrd 259 . . . . . . . . 9 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1 → (abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 1))
7069ralimdva 3164 . . . . . . . 8 ((𝜑𝑘𝑍) → (∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1 → ∀𝑥𝑆 (abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 1))
7170impr 454 . . . . . . 7 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → ∀𝑥𝑆 (abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 1)
7271, 48raleqtrrdv 3327 . . . . . 6 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → ∀𝑥 ∈ dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))(abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 1)
73 brralrspcev 5207 . . . . . 6 ((1 ∈ ℝ ∧ ∀𝑥 ∈ dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))(abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 1) → ∃𝑟 ∈ ℝ ∀𝑥 ∈ dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))(abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 𝑟)
7453, 72, 73sylancr 587 . . . . 5 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → ∃𝑟 ∈ ℝ ∀𝑥 ∈ dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))(abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 𝑟)
75 bddibl 25889 . . . . 5 (((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧))) ∈ MblFn ∧ (vol‘dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))) ∈ ℝ ∧ ∃𝑟 ∈ ℝ ∀𝑥 ∈ dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))(abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 𝑟) → (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧))) ∈ 𝐿1)
7646, 52, 74, 75syl3anc 1370 . . . 4 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧))) ∈ 𝐿1)
7723, 31, 32, 76iblsub 25871 . . 3 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))) ∈ 𝐿1)
7827, 77eqeltrd 2838 . 2 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → 𝐺 ∈ 𝐿1)
7914, 78rexlimddv 3158 1 (𝜑𝐺 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  Vcvv 3477  wss 3962   class class class wbr 5147  cmpt 5230  dom cdm 5688   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  f cof 7694  m cmap 8864  cc 11150  cr 11151  1c1 11153   < clt 11292  cle 11293  cmin 11489  cz 12610  cuz 12875  +crp 13031  abscabs 15269  volcvol 25511  MblFncmbf 25662  𝐿1cibl 25665  𝑢culm 26433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cn 23250  df-cnp 23251  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-ovol 25512  df-vol 25513  df-mbf 25667  df-itg1 25668  df-itg2 25669  df-ibl 25670  df-0p 25718  df-ulm 26434
This theorem is referenced by:  itgulm  26465  itgulm2  26466
  Copyright terms: Public domain W3C validator