MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblulm Structured version   Visualization version   GIF version

Theorem iblulm 25101
Description: A uniform limit of integrable functions is integrable. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
itgulm.z 𝑍 = (ℤ𝑀)
itgulm.m (𝜑𝑀 ∈ ℤ)
itgulm.f (𝜑𝐹:𝑍⟶𝐿1)
itgulm.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
itgulm.s (𝜑 → (vol‘𝑆) ∈ ℝ)
Assertion
Ref Expression
iblulm (𝜑𝐺 ∈ 𝐿1)

Proof of Theorem iblulm
Dummy variables 𝑗 𝑘 𝑟 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm.z . . . 4 𝑍 = (ℤ𝑀)
2 itgulm.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 itgulm.f . . . . . 6 (𝜑𝐹:𝑍⟶𝐿1)
43ffnd 6499 . . . . 5 (𝜑𝐹 Fn 𝑍)
5 itgulm.u . . . . 5 (𝜑𝐹(⇝𝑢𝑆)𝐺)
6 ulmf2 25078 . . . . 5 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
74, 5, 6syl2anc 587 . . . 4 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
8 eqidd 2759 . . . 4 ((𝜑 ∧ (𝑘𝑍𝑥𝑆)) → ((𝐹𝑘)‘𝑥) = ((𝐹𝑘)‘𝑥))
9 eqidd 2759 . . . 4 ((𝜑𝑥𝑆) → (𝐺𝑥) = (𝐺𝑥))
10 1rp 12434 . . . . 5 1 ∈ ℝ+
1110a1i 11 . . . 4 (𝜑 → 1 ∈ ℝ+)
121, 2, 7, 8, 9, 5, 11ulmi 25080 . . 3 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)
131r19.2uz 14759 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1 → ∃𝑘𝑍𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)
1412, 13syl 17 . 2 (𝜑 → ∃𝑘𝑍𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)
15 ulmcl 25075 . . . . . . 7 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
165, 15syl 17 . . . . . 6 (𝜑𝐺:𝑆⟶ℂ)
1716adantr 484 . . . . 5 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → 𝐺:𝑆⟶ℂ)
1817feqmptd 6721 . . . 4 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → 𝐺 = (𝑧𝑆 ↦ (𝐺𝑧)))
197ffvelrnda 6842 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
20 elmapi 8438 . . . . . . . . 9 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2119, 20syl 17 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘):𝑆⟶ℂ)
2221adantrr 716 . . . . . . 7 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝐹𝑘):𝑆⟶ℂ)
2322ffvelrnda 6842 . . . . . 6 (((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
2417ffvelrnda 6842 . . . . . 6 (((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) ∧ 𝑧𝑆) → (𝐺𝑧) ∈ ℂ)
2523, 24nncand 11040 . . . . 5 (((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) ∧ 𝑧𝑆) → (((𝐹𝑘)‘𝑧) − (((𝐹𝑘)‘𝑧) − (𝐺𝑧))) = (𝐺𝑧))
2625mpteq2dva 5127 . . . 4 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))) = (𝑧𝑆 ↦ (𝐺𝑧)))
2718, 26eqtr4d 2796 . . 3 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → 𝐺 = (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))))
2822feqmptd 6721 . . . . 5 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝐹𝑘) = (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)))
293ffvelrnda 6842 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝐿1)
3029adantrr 716 . . . . 5 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝐹𝑘) ∈ 𝐿1)
3128, 30eqeltrrd 2853 . . . 4 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)) ∈ 𝐿1)
3223, 24subcld 11035 . . . 4 (((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) ∧ 𝑧𝑆) → (((𝐹𝑘)‘𝑧) − (𝐺𝑧)) ∈ ℂ)
33 ulmscl 25073 . . . . . . . . 9 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
345, 33syl 17 . . . . . . . 8 (𝜑𝑆 ∈ V)
3534adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → 𝑆 ∈ V)
3635, 23, 24, 28, 18offval2 7424 . . . . . 6 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → ((𝐹𝑘) ∘f𝐺) = (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧))))
37 iblmbf 24467 . . . . . . . 8 ((𝐹𝑘) ∈ 𝐿1 → (𝐹𝑘) ∈ MblFn)
3830, 37syl 17 . . . . . . 7 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝐹𝑘) ∈ MblFn)
39 iblmbf 24467 . . . . . . . . . . 11 (𝑥 ∈ 𝐿1𝑥 ∈ MblFn)
4039ssriv 3896 . . . . . . . . . 10 𝐿1 ⊆ MblFn
41 fss 6512 . . . . . . . . . 10 ((𝐹:𝑍⟶𝐿1 ∧ 𝐿1 ⊆ MblFn) → 𝐹:𝑍⟶MblFn)
423, 40, 41sylancl 589 . . . . . . . . 9 (𝜑𝐹:𝑍⟶MblFn)
431, 2, 42, 5mbfulm 25100 . . . . . . . 8 (𝜑𝐺 ∈ MblFn)
4443adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → 𝐺 ∈ MblFn)
4538, 44mbfsub 24362 . . . . . 6 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → ((𝐹𝑘) ∘f𝐺) ∈ MblFn)
4636, 45eqeltrrd 2853 . . . . 5 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧))) ∈ MblFn)
47 eqid 2758 . . . . . . . 8 (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧))) = (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))
4847, 32dmmptd 6476 . . . . . . 7 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧))) = 𝑆)
4948fveq2d 6662 . . . . . 6 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (vol‘dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))) = (vol‘𝑆))
50 itgulm.s . . . . . . 7 (𝜑 → (vol‘𝑆) ∈ ℝ)
5150adantr 484 . . . . . 6 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (vol‘𝑆) ∈ ℝ)
5249, 51eqeltrd 2852 . . . . 5 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (vol‘dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))) ∈ ℝ)
53 1re 10679 . . . . . 6 1 ∈ ℝ
5421ffvelrnda 6842 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((𝐹𝑘)‘𝑥) ∈ ℂ)
5516adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → 𝐺:𝑆⟶ℂ)
5655ffvelrnda 6842 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (𝐺𝑥) ∈ ℂ)
5754, 56subcld 11035 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (((𝐹𝑘)‘𝑥) − (𝐺𝑥)) ∈ ℂ)
5857abscld 14844 . . . . . . . . . . 11 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℝ)
59 ltle 10767 . . . . . . . . . . 11 (((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1 → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ≤ 1))
6058, 53, 59sylancl 589 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1 → (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ≤ 1))
61 fveq2 6658 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑥))
62 fveq2 6658 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
6361, 62oveq12d 7168 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (((𝐹𝑘)‘𝑧) − (𝐺𝑧)) = (((𝐹𝑘)‘𝑥) − (𝐺𝑥)))
64 ovex 7183 . . . . . . . . . . . . . 14 (((𝐹𝑘)‘𝑥) − (𝐺𝑥)) ∈ V
6563, 47, 64fvmpt 6759 . . . . . . . . . . . . 13 (𝑥𝑆 → ((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥) = (((𝐹𝑘)‘𝑥) − (𝐺𝑥)))
6665adantl 485 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥) = (((𝐹𝑘)‘𝑥) − (𝐺𝑥)))
6766fveq2d 6662 . . . . . . . . . . 11 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) = (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))))
6867breq1d 5042 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 1 ↔ (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) ≤ 1))
6960, 68sylibrd 262 . . . . . . . . 9 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1 → (abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 1))
7069ralimdva 3108 . . . . . . . 8 ((𝜑𝑘𝑍) → (∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1 → ∀𝑥𝑆 (abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 1))
7170impr 458 . . . . . . 7 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → ∀𝑥𝑆 (abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 1)
7248raleqdv 3329 . . . . . . 7 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (∀𝑥 ∈ dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))(abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 1 ↔ ∀𝑥𝑆 (abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 1))
7371, 72mpbird 260 . . . . . 6 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → ∀𝑥 ∈ dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))(abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 1)
74 brralrspcev 5092 . . . . . 6 ((1 ∈ ℝ ∧ ∀𝑥 ∈ dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))(abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 1) → ∃𝑟 ∈ ℝ ∀𝑥 ∈ dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))(abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 𝑟)
7553, 73, 74sylancr 590 . . . . 5 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → ∃𝑟 ∈ ℝ ∀𝑥 ∈ dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))(abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 𝑟)
76 bddibl 24539 . . . . 5 (((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧))) ∈ MblFn ∧ (vol‘dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))) ∈ ℝ ∧ ∃𝑟 ∈ ℝ ∀𝑥 ∈ dom (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))(abs‘((𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))‘𝑥)) ≤ 𝑟) → (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧))) ∈ 𝐿1)
7746, 52, 75, 76syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (𝐺𝑧))) ∈ 𝐿1)
7823, 31, 32, 77iblsub 24521 . . 3 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → (𝑧𝑆 ↦ (((𝐹𝑘)‘𝑧) − (((𝐹𝑘)‘𝑧) − (𝐺𝑧)))) ∈ 𝐿1)
7927, 78eqeltrd 2852 . 2 ((𝜑 ∧ (𝑘𝑍 ∧ ∀𝑥𝑆 (abs‘(((𝐹𝑘)‘𝑥) − (𝐺𝑥))) < 1)) → 𝐺 ∈ 𝐿1)
8014, 79rexlimddv 3215 1 (𝜑𝐺 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3070  wrex 3071  Vcvv 3409  wss 3858   class class class wbr 5032  cmpt 5112  dom cdm 5524   Fn wfn 6330  wf 6331  cfv 6335  (class class class)co 7150  f cof 7403  m cmap 8416  cc 10573  cr 10574  1c1 10576   < clt 10713  cle 10714  cmin 10908  cz 12020  cuz 12282  +crp 12430  abscabs 14641  volcvol 24163  MblFncmbf 24314  𝐿1cibl 24317  𝑢culm 25070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cc 9895  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-disj 4998  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-ofr 7406  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-oadd 8116  df-omul 8117  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-dju 9363  df-card 9401  df-acn 9404  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cn 21927  df-cnp 21928  df-cmp 22087  df-tx 22262  df-hmeo 22455  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-ovol 24164  df-vol 24165  df-mbf 24319  df-itg1 24320  df-itg2 24321  df-ibl 24322  df-0p 24370  df-ulm 25071
This theorem is referenced by:  itgulm  25102  itgulm2  25103
  Copyright terms: Public domain W3C validator