Step | Hyp | Ref
| Expression |
1 | | itgulm.z |
. . . 4
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | | itgulm.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | | itgulm.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑍⟶𝐿1) |
4 | 3 | ffnd 6585 |
. . . . 5
⊢ (𝜑 → 𝐹 Fn 𝑍) |
5 | | itgulm.u |
. . . . 5
⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) |
6 | | ulmf2 25448 |
. . . . 5
⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
7 | 4, 5, 6 | syl2anc 583 |
. . . 4
⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
8 | | eqidd 2739 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑥 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑥) = ((𝐹‘𝑘)‘𝑥)) |
9 | | eqidd 2739 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
10 | | 1rp 12663 |
. . . . 5
⊢ 1 ∈
ℝ+ |
11 | 10 | a1i 11 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ+) |
12 | 1, 2, 7, 8, 9, 5, 11 | ulmi 25450 |
. . 3
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1) |
13 | 1 | r19.2uz 14991 |
. . 3
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1 → ∃𝑘 ∈ 𝑍 ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1) |
14 | 12, 13 | syl 17 |
. 2
⊢ (𝜑 → ∃𝑘 ∈ 𝑍 ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1) |
15 | | ulmcl 25445 |
. . . . . . 7
⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) |
16 | 5, 15 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
17 | 16 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → 𝐺:𝑆⟶ℂ) |
18 | 17 | feqmptd 6819 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → 𝐺 = (𝑧 ∈ 𝑆 ↦ (𝐺‘𝑧))) |
19 | 7 | ffvelrnda 6943 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
20 | | elmapi 8595 |
. . . . . . . . 9
⊢ ((𝐹‘𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹‘𝑘):𝑆⟶ℂ) |
21 | 19, 20 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘):𝑆⟶ℂ) |
22 | 21 | adantrr 713 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → (𝐹‘𝑘):𝑆⟶ℂ) |
23 | 22 | ffvelrnda 6943 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
24 | 17 | ffvelrnda 6943 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) ∈ ℂ) |
25 | 23, 24 | nncand 11267 |
. . . . 5
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) ∧ 𝑧 ∈ 𝑆) → (((𝐹‘𝑘)‘𝑧) − (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) = (𝐺‘𝑧)) |
26 | 25 | mpteq2dva 5170 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))) = (𝑧 ∈ 𝑆 ↦ (𝐺‘𝑧))) |
27 | 18, 26 | eqtr4d 2781 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → 𝐺 = (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))))) |
28 | 22 | feqmptd 6819 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → (𝐹‘𝑘) = (𝑧 ∈ 𝑆 ↦ ((𝐹‘𝑘)‘𝑧))) |
29 | 3 | ffvelrnda 6943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈
𝐿1) |
30 | 29 | adantrr 713 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → (𝐹‘𝑘) ∈
𝐿1) |
31 | 28, 30 | eqeltrrd 2840 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → (𝑧 ∈ 𝑆 ↦ ((𝐹‘𝑘)‘𝑧)) ∈
𝐿1) |
32 | 23, 24 | subcld 11262 |
. . . 4
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) ∧ 𝑧 ∈ 𝑆) → (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)) ∈ ℂ) |
33 | | ulmscl 25443 |
. . . . . . . . 9
⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) |
34 | 5, 33 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ V) |
35 | 34 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → 𝑆 ∈ V) |
36 | 35, 23, 24, 28, 18 | offval2 7531 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → ((𝐹‘𝑘) ∘f − 𝐺) = (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))) |
37 | | iblmbf 24837 |
. . . . . . . 8
⊢ ((𝐹‘𝑘) ∈ 𝐿1 → (𝐹‘𝑘) ∈ MblFn) |
38 | 30, 37 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → (𝐹‘𝑘) ∈ MblFn) |
39 | | iblmbf 24837 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐿1
→ 𝑥 ∈
MblFn) |
40 | 39 | ssriv 3921 |
. . . . . . . . . 10
⊢
𝐿1 ⊆ MblFn |
41 | | fss 6601 |
. . . . . . . . . 10
⊢ ((𝐹:𝑍⟶𝐿1 ∧
𝐿1 ⊆ MblFn) → 𝐹:𝑍⟶MblFn) |
42 | 3, 40, 41 | sylancl 585 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑍⟶MblFn) |
43 | 1, 2, 42, 5 | mbfulm 25470 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ MblFn) |
44 | 43 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → 𝐺 ∈ MblFn) |
45 | 38, 44 | mbfsub 24731 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → ((𝐹‘𝑘) ∘f − 𝐺) ∈ MblFn) |
46 | 36, 45 | eqeltrrd 2840 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) ∈ MblFn) |
47 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) = (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) |
48 | 47, 32 | dmmptd 6562 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → dom (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) = 𝑆) |
49 | 48 | fveq2d 6760 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → (vol‘dom (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))) = (vol‘𝑆)) |
50 | | itgulm.s |
. . . . . . 7
⊢ (𝜑 → (vol‘𝑆) ∈
ℝ) |
51 | 50 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → (vol‘𝑆) ∈
ℝ) |
52 | 49, 51 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → (vol‘dom (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))) ∈ ℝ) |
53 | | 1re 10906 |
. . . . . 6
⊢ 1 ∈
ℝ |
54 | 21 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑥 ∈ 𝑆) → ((𝐹‘𝑘)‘𝑥) ∈ ℂ) |
55 | 16 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐺:𝑆⟶ℂ) |
56 | 55 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑥) ∈ ℂ) |
57 | 54, 56 | subcld 11262 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑥 ∈ 𝑆) → (((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥)) ∈ ℂ) |
58 | 57 | abscld 15076 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑥 ∈ 𝑆) → (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) ∈ ℝ) |
59 | | ltle 10994 |
. . . . . . . . . . 11
⊢
(((abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) ∈ ℝ ∧ 1 ∈ ℝ)
→ ((abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1 → (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) ≤ 1)) |
60 | 58, 53, 59 | sylancl 585 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑥 ∈ 𝑆) → ((abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1 → (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) ≤ 1)) |
61 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑥 → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝑥)) |
62 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑥 → (𝐺‘𝑧) = (𝐺‘𝑥)) |
63 | 61, 62 | oveq12d 7273 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)) = (((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) |
64 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥)) ∈ V |
65 | 63, 47, 64 | fvmpt 6857 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))‘𝑥) = (((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) |
66 | 65 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑥 ∈ 𝑆) → ((𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))‘𝑥) = (((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) |
67 | 66 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑥 ∈ 𝑆) → (abs‘((𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))‘𝑥)) = (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥)))) |
68 | 67 | breq1d 5080 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑥 ∈ 𝑆) → ((abs‘((𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))‘𝑥)) ≤ 1 ↔ (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) ≤ 1)) |
69 | 60, 68 | sylibrd 258 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑥 ∈ 𝑆) → ((abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1 → (abs‘((𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))‘𝑥)) ≤ 1)) |
70 | 69 | ralimdva 3102 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1 → ∀𝑥 ∈ 𝑆 (abs‘((𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))‘𝑥)) ≤ 1)) |
71 | 70 | impr 454 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → ∀𝑥 ∈ 𝑆 (abs‘((𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))‘𝑥)) ≤ 1) |
72 | 48 | raleqdv 3339 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → (∀𝑥 ∈ dom (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))(abs‘((𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))‘𝑥)) ≤ 1 ↔ ∀𝑥 ∈ 𝑆 (abs‘((𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))‘𝑥)) ≤ 1)) |
73 | 71, 72 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → ∀𝑥 ∈ dom (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))(abs‘((𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))‘𝑥)) ≤ 1) |
74 | | brralrspcev 5130 |
. . . . . 6
⊢ ((1
∈ ℝ ∧ ∀𝑥 ∈ dom (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))(abs‘((𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))‘𝑥)) ≤ 1) → ∃𝑟 ∈ ℝ ∀𝑥 ∈ dom (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))(abs‘((𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))‘𝑥)) ≤ 𝑟) |
75 | 53, 73, 74 | sylancr 586 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → ∃𝑟 ∈ ℝ ∀𝑥 ∈ dom (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))(abs‘((𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))‘𝑥)) ≤ 𝑟) |
76 | | bddibl 24909 |
. . . . 5
⊢ (((𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) ∈ MblFn ∧ (vol‘dom (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))) ∈ ℝ ∧ ∃𝑟 ∈ ℝ ∀𝑥 ∈ dom (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))(abs‘((𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))‘𝑥)) ≤ 𝑟) → (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) ∈
𝐿1) |
77 | 46, 52, 75, 76 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) ∈
𝐿1) |
78 | 23, 31, 32, 77 | iblsub 24891 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → (𝑧 ∈ 𝑆 ↦ (((𝐹‘𝑘)‘𝑧) − (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)))) ∈
𝐿1) |
79 | 27, 78 | eqeltrd 2839 |
. 2
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ ∀𝑥 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑥) − (𝐺‘𝑥))) < 1)) → 𝐺 ∈
𝐿1) |
80 | 14, 79 | rexlimddv 3219 |
1
⊢ (𝜑 → 𝐺 ∈
𝐿1) |