MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmcl Structured version   Visualization version   GIF version

Theorem ulmcl 26342
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmcl (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)

Proof of Theorem ulmcl
Dummy variables 𝑗 𝑘 𝑛 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmscl 26340 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
2 ulmval 26341 . . . 4 (𝑆 ∈ V → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
31, 2syl 17 . . 3 (𝐹(⇝𝑢𝑆)𝐺 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
43ibi 267 . 2 (𝐹(⇝𝑢𝑆)𝐺 → ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
5 simp2 1137 . . 3 ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) → 𝐺:𝑆⟶ℂ)
65rexlimivw 3137 . 2 (∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) → 𝐺:𝑆⟶ℂ)
74, 6syl 17 1 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2108  wral 3051  wrex 3060  Vcvv 3459   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840  cc 11127   < clt 11269  cmin 11466  cz 12588  cuz 12852  +crp 13008  abscabs 15253  𝑢culm 26337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-pm 8843  df-neg 11469  df-z 12589  df-uz 12853  df-ulm 26338
This theorem is referenced by:  ulmi  26347  ulmclm  26348  ulmres  26349  ulmshftlem  26350  ulmuni  26353  ulmcau  26356  ulmss  26358  ulmbdd  26359  ulmcn  26360  ulmdvlem1  26361  ulmdvlem3  26363  ulmdv  26364  mbfulm  26367  iblulm  26368  itgulm  26369  itgulm2  26370  pserulm  26383  lgamgulmlem6  26996  lgamgulm2  26998  knoppcnlem9  36519
  Copyright terms: Public domain W3C validator