![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmcl | Structured version Visualization version GIF version |
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
ulmcl | ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmscl 26440 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) | |
2 | ulmval 26441 | . . . 4 ⊢ (𝑆 ∈ V → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥))) |
4 | 3 | ibi 267 | . 2 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → ∃𝑛 ∈ ℤ (𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
5 | simp2 1137 | . . 3 ⊢ ((𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) → 𝐺:𝑆⟶ℂ) | |
6 | 5 | rexlimivw 3157 | . 2 ⊢ (∃𝑛 ∈ ℤ (𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥) → 𝐺:𝑆⟶ℂ) |
7 | 4, 6 | syl 17 | 1 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 ℂcc 11182 < clt 11324 − cmin 11520 ℤcz 12639 ℤ≥cuz 12903 ℝ+crp 13057 abscabs 15283 ⇝𝑢culm 26437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-pm 8887 df-neg 11523 df-z 12640 df-uz 12904 df-ulm 26438 |
This theorem is referenced by: ulmi 26447 ulmclm 26448 ulmres 26449 ulmshftlem 26450 ulmuni 26453 ulmcau 26456 ulmss 26458 ulmbdd 26459 ulmcn 26460 ulmdvlem1 26461 ulmdvlem3 26463 ulmdv 26464 mbfulm 26467 iblulm 26468 itgulm 26469 itgulm2 26470 pserulm 26483 lgamgulmlem6 27095 lgamgulm2 27097 knoppcnlem9 36467 |
Copyright terms: Public domain | W3C validator |