| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulmi | Structured version Visualization version GIF version | ||
| Description: The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| ulm2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ulm2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| ulm2.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| ulm2.b | ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = 𝐵) |
| ulm2.a | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = 𝐴) |
| ulmi.u | ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) |
| ulmi.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| ulmi | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5106 | . . . 4 ⊢ (𝑥 = 𝐶 → ((abs‘(𝐵 − 𝐴)) < 𝑥 ↔ (abs‘(𝐵 − 𝐴)) < 𝐶)) | |
| 2 | 1 | ralbidv 3156 | . . 3 ⊢ (𝑥 = 𝐶 → (∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥 ↔ ∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶)) |
| 3 | 2 | rexralbidv 3201 | . 2 ⊢ (𝑥 = 𝐶 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶)) |
| 4 | ulmi.u | . . 3 ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) | |
| 5 | ulm2.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | ulm2.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | ulm2.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | |
| 8 | ulm2.b | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = 𝐵) | |
| 9 | ulm2.a | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = 𝐴) | |
| 10 | ulmcl 26266 | . . . . 5 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | |
| 11 | 4, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
| 12 | ulmscl 26264 | . . . . 5 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) | |
| 13 | 4, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
| 14 | 5, 6, 7, 8, 9, 11, 13 | ulm2 26270 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥)) |
| 15 | 4, 14 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥) |
| 16 | ulmi.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 17 | 3, 15, 16 | rspcdva 3586 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3444 class class class wbr 5102 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 ℂcc 11042 < clt 11184 − cmin 11381 ℤcz 12505 ℤ≥cuz 12769 ℝ+crp 12927 abscabs 15176 ⇝𝑢culm 26261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-neg 11384 df-z 12506 df-uz 12770 df-ulm 26262 |
| This theorem is referenced by: ulmshftlem 26274 ulmcau 26280 ulmbdd 26283 ulmcn 26284 iblulm 26292 itgulm 26293 |
| Copyright terms: Public domain | W3C validator |