| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulmi | Structured version Visualization version GIF version | ||
| Description: The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| ulm2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ulm2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| ulm2.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| ulm2.b | ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = 𝐵) |
| ulm2.a | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = 𝐴) |
| ulmi.u | ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) |
| ulmi.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| ulmi | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5120 | . . . 4 ⊢ (𝑥 = 𝐶 → ((abs‘(𝐵 − 𝐴)) < 𝑥 ↔ (abs‘(𝐵 − 𝐴)) < 𝐶)) | |
| 2 | 1 | ralbidv 3161 | . . 3 ⊢ (𝑥 = 𝐶 → (∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥 ↔ ∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶)) |
| 3 | 2 | rexralbidv 3205 | . 2 ⊢ (𝑥 = 𝐶 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶)) |
| 4 | ulmi.u | . . 3 ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) | |
| 5 | ulm2.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | ulm2.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | ulm2.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | |
| 8 | ulm2.b | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = 𝐵) | |
| 9 | ulm2.a | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = 𝐴) | |
| 10 | ulmcl 26327 | . . . . 5 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | |
| 11 | 4, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
| 12 | ulmscl 26325 | . . . . 5 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) | |
| 13 | 4, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
| 14 | 5, 6, 7, 8, 9, 11, 13 | ulm2 26331 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥)) |
| 15 | 4, 14 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥) |
| 16 | ulmi.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 17 | 3, 15, 16 | rspcdva 3600 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 Vcvv 3457 class class class wbr 5116 ⟶wf 6523 ‘cfv 6527 (class class class)co 7399 ↑m cmap 8834 ℂcc 11119 < clt 11261 − cmin 11458 ℤcz 12580 ℤ≥cuz 12844 ℝ+crp 13000 abscabs 15240 ⇝𝑢culm 26322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-pre-lttri 11195 ax-pre-lttrn 11196 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-po 5558 df-so 5559 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-er 8713 df-map 8836 df-pm 8837 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-neg 11461 df-z 12581 df-uz 12845 df-ulm 26323 |
| This theorem is referenced by: ulmshftlem 26335 ulmcau 26341 ulmbdd 26344 ulmcn 26345 iblulm 26353 itgulm 26354 |
| Copyright terms: Public domain | W3C validator |