MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmi Structured version   Visualization version   GIF version

Theorem ulmi 24968
Description: The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulm2.z 𝑍 = (ℤ𝑀)
ulm2.m (𝜑𝑀 ∈ ℤ)
ulm2.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulm2.b ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = 𝐵)
ulm2.a ((𝜑𝑧𝑆) → (𝐺𝑧) = 𝐴)
ulmi.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
ulmi.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
ulmi (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶)
Distinct variable groups:   𝑗,𝑘,𝑧,𝐹   𝑗,𝐺,𝑘,𝑧   𝑗,𝑀,𝑘,𝑧   𝜑,𝑗,𝑘,𝑧   𝐴,𝑗,𝑘   𝐶,𝑗,𝑘,𝑧   𝑆,𝑗,𝑘,𝑧   𝑗,𝑍
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧,𝑗,𝑘)   𝑍(𝑧,𝑘)

Proof of Theorem ulmi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5062 . . . 4 (𝑥 = 𝐶 → ((abs‘(𝐵𝐴)) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝐶))
21ralbidv 3197 . . 3 (𝑥 = 𝐶 → (∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶))
32rexralbidv 3301 . 2 (𝑥 = 𝐶 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶))
4 ulmi.u . . 3 (𝜑𝐹(⇝𝑢𝑆)𝐺)
5 ulm2.z . . . 4 𝑍 = (ℤ𝑀)
6 ulm2.m . . . 4 (𝜑𝑀 ∈ ℤ)
7 ulm2.f . . . 4 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
8 ulm2.b . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = 𝐵)
9 ulm2.a . . . 4 ((𝜑𝑧𝑆) → (𝐺𝑧) = 𝐴)
10 ulmcl 24963 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
114, 10syl 17 . . . 4 (𝜑𝐺:𝑆⟶ℂ)
12 ulmscl 24961 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
134, 12syl 17 . . . 4 (𝜑𝑆 ∈ V)
145, 6, 7, 8, 9, 11, 13ulm2 24967 . . 3 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
154, 14mpbid 234 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)
16 ulmi.c . 2 (𝜑𝐶 ∈ ℝ+)
173, 15, 16rspcdva 3624 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  Vcvv 3494   class class class wbr 5058  wf 6345  cfv 6349  (class class class)co 7150  m cmap 8400  cc 10529   < clt 10669  cmin 10864  cz 11975  cuz 12237  +crp 12383  abscabs 14587  𝑢culm 24958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-neg 10867  df-z 11976  df-uz 12238  df-ulm 24959
This theorem is referenced by:  ulmshftlem  24971  ulmcau  24977  ulmbdd  24980  ulmcn  24981  iblulm  24989  itgulm  24990
  Copyright terms: Public domain W3C validator