![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmi | Structured version Visualization version GIF version |
Description: The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015.) |
Ref | Expression |
---|---|
ulm2.z | β’ π = (β€β₯βπ) |
ulm2.m | β’ (π β π β β€) |
ulm2.f | β’ (π β πΉ:πβΆ(β βm π)) |
ulm2.b | β’ ((π β§ (π β π β§ π§ β π)) β ((πΉβπ)βπ§) = π΅) |
ulm2.a | β’ ((π β§ π§ β π) β (πΊβπ§) = π΄) |
ulmi.u | β’ (π β πΉ(βπ’βπ)πΊ) |
ulmi.c | β’ (π β πΆ β β+) |
Ref | Expression |
---|---|
ulmi | β’ (π β βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(π΅ β π΄)) < πΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5151 | . . . 4 β’ (π₯ = πΆ β ((absβ(π΅ β π΄)) < π₯ β (absβ(π΅ β π΄)) < πΆ)) | |
2 | 1 | ralbidv 3177 | . . 3 β’ (π₯ = πΆ β (βπ§ β π (absβ(π΅ β π΄)) < π₯ β βπ§ β π (absβ(π΅ β π΄)) < πΆ)) |
3 | 2 | rexralbidv 3220 | . 2 β’ (π₯ = πΆ β (βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(π΅ β π΄)) < π₯ β βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(π΅ β π΄)) < πΆ)) |
4 | ulmi.u | . . 3 β’ (π β πΉ(βπ’βπ)πΊ) | |
5 | ulm2.z | . . . 4 β’ π = (β€β₯βπ) | |
6 | ulm2.m | . . . 4 β’ (π β π β β€) | |
7 | ulm2.f | . . . 4 β’ (π β πΉ:πβΆ(β βm π)) | |
8 | ulm2.b | . . . 4 β’ ((π β§ (π β π β§ π§ β π)) β ((πΉβπ)βπ§) = π΅) | |
9 | ulm2.a | . . . 4 β’ ((π β§ π§ β π) β (πΊβπ§) = π΄) | |
10 | ulmcl 25884 | . . . . 5 β’ (πΉ(βπ’βπ)πΊ β πΊ:πβΆβ) | |
11 | 4, 10 | syl 17 | . . . 4 β’ (π β πΊ:πβΆβ) |
12 | ulmscl 25882 | . . . . 5 β’ (πΉ(βπ’βπ)πΊ β π β V) | |
13 | 4, 12 | syl 17 | . . . 4 β’ (π β π β V) |
14 | 5, 6, 7, 8, 9, 11, 13 | ulm2 25888 | . . 3 β’ (π β (πΉ(βπ’βπ)πΊ β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(π΅ β π΄)) < π₯)) |
15 | 4, 14 | mpbid 231 | . 2 β’ (π β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(π΅ β π΄)) < π₯) |
16 | ulmi.c | . 2 β’ (π β πΆ β β+) | |
17 | 3, 15, 16 | rspcdva 3613 | 1 β’ (π β βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(π΅ β π΄)) < πΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 βwrex 3070 Vcvv 3474 class class class wbr 5147 βΆwf 6536 βcfv 6540 (class class class)co 7405 βm cmap 8816 βcc 11104 < clt 11244 β cmin 11440 β€cz 12554 β€β₯cuz 12818 β+crp 12970 abscabs 15177 βπ’culm 25879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-neg 11443 df-z 12555 df-uz 12819 df-ulm 25880 |
This theorem is referenced by: ulmshftlem 25892 ulmcau 25898 ulmbdd 25901 ulmcn 25902 iblulm 25910 itgulm 25911 |
Copyright terms: Public domain | W3C validator |