![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmi | Structured version Visualization version GIF version |
Description: The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015.) |
Ref | Expression |
---|---|
ulm2.z | β’ π = (β€β₯βπ) |
ulm2.m | β’ (π β π β β€) |
ulm2.f | β’ (π β πΉ:πβΆ(β βm π)) |
ulm2.b | β’ ((π β§ (π β π β§ π§ β π)) β ((πΉβπ)βπ§) = π΅) |
ulm2.a | β’ ((π β§ π§ β π) β (πΊβπ§) = π΄) |
ulmi.u | β’ (π β πΉ(βπ’βπ)πΊ) |
ulmi.c | β’ (π β πΆ β β+) |
Ref | Expression |
---|---|
ulmi | β’ (π β βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(π΅ β π΄)) < πΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5152 | . . . 4 β’ (π₯ = πΆ β ((absβ(π΅ β π΄)) < π₯ β (absβ(π΅ β π΄)) < πΆ)) | |
2 | 1 | ralbidv 3176 | . . 3 β’ (π₯ = πΆ β (βπ§ β π (absβ(π΅ β π΄)) < π₯ β βπ§ β π (absβ(π΅ β π΄)) < πΆ)) |
3 | 2 | rexralbidv 3219 | . 2 β’ (π₯ = πΆ β (βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(π΅ β π΄)) < π₯ β βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(π΅ β π΄)) < πΆ)) |
4 | ulmi.u | . . 3 β’ (π β πΉ(βπ’βπ)πΊ) | |
5 | ulm2.z | . . . 4 β’ π = (β€β₯βπ) | |
6 | ulm2.m | . . . 4 β’ (π β π β β€) | |
7 | ulm2.f | . . . 4 β’ (π β πΉ:πβΆ(β βm π)) | |
8 | ulm2.b | . . . 4 β’ ((π β§ (π β π β§ π§ β π)) β ((πΉβπ)βπ§) = π΅) | |
9 | ulm2.a | . . . 4 β’ ((π β§ π§ β π) β (πΊβπ§) = π΄) | |
10 | ulmcl 26130 | . . . . 5 β’ (πΉ(βπ’βπ)πΊ β πΊ:πβΆβ) | |
11 | 4, 10 | syl 17 | . . . 4 β’ (π β πΊ:πβΆβ) |
12 | ulmscl 26128 | . . . . 5 β’ (πΉ(βπ’βπ)πΊ β π β V) | |
13 | 4, 12 | syl 17 | . . . 4 β’ (π β π β V) |
14 | 5, 6, 7, 8, 9, 11, 13 | ulm2 26134 | . . 3 β’ (π β (πΉ(βπ’βπ)πΊ β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(π΅ β π΄)) < π₯)) |
15 | 4, 14 | mpbid 231 | . 2 β’ (π β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(π΅ β π΄)) < π₯) |
16 | ulmi.c | . 2 β’ (π β πΆ β β+) | |
17 | 3, 15, 16 | rspcdva 3613 | 1 β’ (π β βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(π΅ β π΄)) < πΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 βwrex 3069 Vcvv 3473 class class class wbr 5148 βΆwf 6539 βcfv 6543 (class class class)co 7412 βm cmap 8824 βcc 11112 < clt 11253 β cmin 11449 β€cz 12563 β€β₯cuz 12827 β+crp 12979 abscabs 15186 βπ’culm 26125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-pre-lttri 11188 ax-pre-lttrn 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8707 df-map 8826 df-pm 8827 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-neg 11452 df-z 12564 df-uz 12828 df-ulm 26126 |
This theorem is referenced by: ulmshftlem 26138 ulmcau 26144 ulmbdd 26147 ulmcn 26148 iblulm 26156 itgulm 26157 |
Copyright terms: Public domain | W3C validator |