MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgulm2 Structured version   Visualization version   GIF version

Theorem itgulm2 25330
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
itgulm2.z 𝑍 = (ℤ𝑀)
itgulm2.m (𝜑𝑀 ∈ ℤ)
itgulm2.l ((𝜑𝑘𝑍) → (𝑥𝑆𝐴) ∈ 𝐿1)
itgulm2.u (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵))
itgulm2.s (𝜑 → (vol‘𝑆) ∈ ℝ)
Assertion
Ref Expression
itgulm2 (𝜑 → ((𝑥𝑆𝐵) ∈ 𝐿1 ∧ (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥))
Distinct variable groups:   𝑥,𝑘,𝜑   𝑆,𝑘,𝑥   𝑘,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem itgulm2
Dummy variables 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm2.z . . 3 𝑍 = (ℤ𝑀)
2 itgulm2.m . . 3 (𝜑𝑀 ∈ ℤ)
3 itgulm2.l . . . 4 ((𝜑𝑘𝑍) → (𝑥𝑆𝐴) ∈ 𝐿1)
43fmpttd 6953 . . 3 (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴)):𝑍⟶𝐿1)
5 itgulm2.u . . 3 (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵))
6 itgulm2.s . . 3 (𝜑 → (vol‘𝑆) ∈ ℝ)
71, 2, 4, 5, 6iblulm 25328 . 2 (𝜑 → (𝑥𝑆𝐵) ∈ 𝐿1)
81, 2, 4, 5, 6itgulm 25329 . . 3 (𝜑 → (𝑛𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧) ⇝ ∫𝑆((𝑥𝑆𝐵)‘𝑧) d𝑧)
9 nfcv 2906 . . . . . 6 𝑘𝑆
10 nffvmpt1 6749 . . . . . . 7 𝑘((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)
11 nfcv 2906 . . . . . . 7 𝑘𝑧
1210, 11nffv 6748 . . . . . 6 𝑘(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧)
139, 12nfitg 24701 . . . . 5 𝑘𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧
14 nfcv 2906 . . . . 5 𝑛𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥
15 fveq2 6738 . . . . . . 7 (𝑧 = 𝑥 → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) = (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥))
16 nfcv 2906 . . . . . . . . . 10 𝑥𝑍
17 nfmpt1 5169 . . . . . . . . . 10 𝑥(𝑥𝑆𝐴)
1816, 17nfmpt 5168 . . . . . . . . 9 𝑥(𝑘𝑍 ↦ (𝑥𝑆𝐴))
19 nfcv 2906 . . . . . . . . 9 𝑥𝑛
2018, 19nffv 6748 . . . . . . . 8 𝑥((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)
21 nfcv 2906 . . . . . . . 8 𝑥𝑧
2220, 21nffv 6748 . . . . . . 7 𝑥(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧)
23 nfcv 2906 . . . . . . 7 𝑧(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥)
2415, 22, 23cbvitg 24702 . . . . . 6 𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧 = ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥) d𝑥
25 fveq2 6738 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛) = ((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘))
2625fveq1d 6740 . . . . . . . 8 (𝑛 = 𝑘 → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥) = (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥))
2726adantr 484 . . . . . . 7 ((𝑛 = 𝑘𝑥𝑆) → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥) = (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥))
2827itgeq2dv 24708 . . . . . 6 (𝑛 = 𝑘 → ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥) d𝑥 = ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥)
2924, 28syl5eq 2792 . . . . 5 (𝑛 = 𝑘 → ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧 = ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥)
3013, 14, 29cbvmpt 5172 . . . 4 (𝑛𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧) = (𝑘𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥)
31 simplr 769 . . . . . . . . 9 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → 𝑘𝑍)
32 ulmscl 25300 . . . . . . . . . . 11 ((𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵) → 𝑆 ∈ V)
33 mptexg 7058 . . . . . . . . . . 11 (𝑆 ∈ V → (𝑥𝑆𝐴) ∈ V)
345, 32, 333syl 18 . . . . . . . . . 10 (𝜑 → (𝑥𝑆𝐴) ∈ V)
3534ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (𝑥𝑆𝐴) ∈ V)
36 eqid 2739 . . . . . . . . . 10 (𝑘𝑍 ↦ (𝑥𝑆𝐴)) = (𝑘𝑍 ↦ (𝑥𝑆𝐴))
3736fvmpt2 6850 . . . . . . . . 9 ((𝑘𝑍 ∧ (𝑥𝑆𝐴) ∈ V) → ((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘) = (𝑥𝑆𝐴))
3831, 35, 37syl2anc 587 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘) = (𝑥𝑆𝐴))
3938fveq1d 6740 . . . . . . 7 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) = ((𝑥𝑆𝐴)‘𝑥))
40 simpr 488 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → 𝑥𝑆)
4134ralrimivw 3108 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝑍 (𝑥𝑆𝐴) ∈ V)
4236fnmpt 6539 . . . . . . . . . . . . 13 (∀𝑘𝑍 (𝑥𝑆𝐴) ∈ V → (𝑘𝑍 ↦ (𝑥𝑆𝐴)) Fn 𝑍)
4341, 42syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴)) Fn 𝑍)
44 ulmf2 25305 . . . . . . . . . . . 12 (((𝑘𝑍 ↦ (𝑥𝑆𝐴)) Fn 𝑍 ∧ (𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵)) → (𝑘𝑍 ↦ (𝑥𝑆𝐴)):𝑍⟶(ℂ ↑m 𝑆))
4543, 5, 44syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴)):𝑍⟶(ℂ ↑m 𝑆))
4645fvmptelrn 6951 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝑥𝑆𝐴) ∈ (ℂ ↑m 𝑆))
47 elmapi 8553 . . . . . . . . . 10 ((𝑥𝑆𝐴) ∈ (ℂ ↑m 𝑆) → (𝑥𝑆𝐴):𝑆⟶ℂ)
4846, 47syl 17 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑥𝑆𝐴):𝑆⟶ℂ)
4948fvmptelrn 6951 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → 𝐴 ∈ ℂ)
50 eqid 2739 . . . . . . . . 9 (𝑥𝑆𝐴) = (𝑥𝑆𝐴)
5150fvmpt2 6850 . . . . . . . 8 ((𝑥𝑆𝐴 ∈ ℂ) → ((𝑥𝑆𝐴)‘𝑥) = 𝐴)
5240, 49, 51syl2anc 587 . . . . . . 7 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((𝑥𝑆𝐴)‘𝑥) = 𝐴)
5339, 52eqtrd 2779 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) = 𝐴)
5453itgeq2dv 24708 . . . . 5 ((𝜑𝑘𝑍) → ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥 = ∫𝑆𝐴 d𝑥)
5554mpteq2dva 5166 . . . 4 (𝜑 → (𝑘𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥) = (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥))
5630, 55syl5eq 2792 . . 3 (𝜑 → (𝑛𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧) = (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥))
57 fveq2 6738 . . . . 5 (𝑧 = 𝑥 → ((𝑥𝑆𝐵)‘𝑧) = ((𝑥𝑆𝐵)‘𝑥))
58 nffvmpt1 6749 . . . . 5 𝑥((𝑥𝑆𝐵)‘𝑧)
59 nfcv 2906 . . . . 5 𝑧((𝑥𝑆𝐵)‘𝑥)
6057, 58, 59cbvitg 24702 . . . 4 𝑆((𝑥𝑆𝐵)‘𝑧) d𝑧 = ∫𝑆((𝑥𝑆𝐵)‘𝑥) d𝑥
61 simpr 488 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝑆)
62 ulmcl 25302 . . . . . . . 8 ((𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵) → (𝑥𝑆𝐵):𝑆⟶ℂ)
635, 62syl 17 . . . . . . 7 (𝜑 → (𝑥𝑆𝐵):𝑆⟶ℂ)
6463fvmptelrn 6951 . . . . . 6 ((𝜑𝑥𝑆) → 𝐵 ∈ ℂ)
65 eqid 2739 . . . . . . 7 (𝑥𝑆𝐵) = (𝑥𝑆𝐵)
6665fvmpt2 6850 . . . . . 6 ((𝑥𝑆𝐵 ∈ ℂ) → ((𝑥𝑆𝐵)‘𝑥) = 𝐵)
6761, 64, 66syl2anc 587 . . . . 5 ((𝜑𝑥𝑆) → ((𝑥𝑆𝐵)‘𝑥) = 𝐵)
6867itgeq2dv 24708 . . . 4 (𝜑 → ∫𝑆((𝑥𝑆𝐵)‘𝑥) d𝑥 = ∫𝑆𝐵 d𝑥)
6960, 68syl5eq 2792 . . 3 (𝜑 → ∫𝑆((𝑥𝑆𝐵)‘𝑧) d𝑧 = ∫𝑆𝐵 d𝑥)
708, 56, 693brtr3d 5100 . 2 (𝜑 → (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥)
717, 70jca 515 1 (𝜑 → ((𝑥𝑆𝐵) ∈ 𝐿1 ∧ (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wral 3063  Vcvv 3422   class class class wbr 5069  cmpt 5151   Fn wfn 6395  wf 6396  cfv 6400  (class class class)co 7234  m cmap 8531  cc 10754  cr 10755  cz 12203  cuz 12465  cli 15075  volcvol 24389  𝐿1cibl 24543  citg 24544  𝑢culm 25297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5195  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-inf2 9283  ax-cc 10076  ax-cnex 10812  ax-resscn 10813  ax-1cn 10814  ax-icn 10815  ax-addcl 10816  ax-addrcl 10817  ax-mulcl 10818  ax-mulrcl 10819  ax-mulcom 10820  ax-addass 10821  ax-mulass 10822  ax-distr 10823  ax-i2m1 10824  ax-1ne0 10825  ax-1rid 10826  ax-rnegex 10827  ax-rrecex 10828  ax-cnre 10829  ax-pre-lttri 10830  ax-pre-lttrn 10831  ax-pre-ltadd 10832  ax-pre-mulgt0 10833  ax-pre-sup 10834  ax-addf 10835  ax-mulf 10836
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3711  df-csb 3828  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-int 4876  df-iun 4922  df-iin 4923  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-se 5527  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-isom 6409  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-of 7490  df-ofr 7491  df-om 7666  df-1st 7782  df-2nd 7783  df-supp 7927  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-1o 8225  df-2o 8226  df-oadd 8229  df-omul 8230  df-er 8414  df-map 8533  df-pm 8534  df-ixp 8602  df-en 8650  df-dom 8651  df-sdom 8652  df-fin 8653  df-fsupp 9013  df-fi 9054  df-sup 9085  df-inf 9086  df-oi 9153  df-dju 9544  df-card 9582  df-acn 9585  df-pnf 10896  df-mnf 10897  df-xr 10898  df-ltxr 10899  df-le 10900  df-sub 11091  df-neg 11092  df-div 11517  df-nn 11858  df-2 11920  df-3 11921  df-4 11922  df-5 11923  df-6 11924  df-7 11925  df-8 11926  df-9 11927  df-n0 12118  df-z 12204  df-dec 12321  df-uz 12466  df-q 12572  df-rp 12614  df-xneg 12731  df-xadd 12732  df-xmul 12733  df-ioo 12966  df-ioc 12967  df-ico 12968  df-icc 12969  df-fz 13123  df-fzo 13266  df-fl 13394  df-mod 13472  df-seq 13604  df-exp 13665  df-hash 13927  df-cj 14692  df-re 14693  df-im 14694  df-sqrt 14828  df-abs 14829  df-limsup 15062  df-clim 15079  df-rlim 15080  df-sum 15280  df-struct 16730  df-sets 16747  df-slot 16765  df-ndx 16775  df-base 16791  df-ress 16815  df-plusg 16845  df-mulr 16846  df-starv 16847  df-sca 16848  df-vsca 16849  df-ip 16850  df-tset 16851  df-ple 16852  df-ds 16854  df-unif 16855  df-hom 16856  df-cco 16857  df-rest 16957  df-topn 16958  df-0g 16976  df-gsum 16977  df-topgen 16978  df-pt 16979  df-prds 16982  df-xrs 17037  df-qtop 17042  df-imas 17043  df-xps 17045  df-mre 17119  df-mrc 17120  df-acs 17122  df-mgm 18144  df-sgrp 18193  df-mnd 18204  df-submnd 18249  df-mulg 18519  df-cntz 18741  df-cmn 19202  df-psmet 20385  df-xmet 20386  df-met 20387  df-bl 20388  df-mopn 20389  df-cnfld 20394  df-top 21820  df-topon 21837  df-topsp 21859  df-bases 21872  df-cn 22153  df-cnp 22154  df-cmp 22313  df-tx 22488  df-hmeo 22681  df-xms 23247  df-ms 23248  df-tms 23249  df-cncf 23804  df-ovol 24390  df-vol 24391  df-mbf 24545  df-itg1 24546  df-itg2 24547  df-ibl 24548  df-itg 24549  df-0p 24596  df-ulm 25298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator