MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgulm2 Structured version   Visualization version   GIF version

Theorem itgulm2 25004
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
itgulm2.z 𝑍 = (ℤ𝑀)
itgulm2.m (𝜑𝑀 ∈ ℤ)
itgulm2.l ((𝜑𝑘𝑍) → (𝑥𝑆𝐴) ∈ 𝐿1)
itgulm2.u (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵))
itgulm2.s (𝜑 → (vol‘𝑆) ∈ ℝ)
Assertion
Ref Expression
itgulm2 (𝜑 → ((𝑥𝑆𝐵) ∈ 𝐿1 ∧ (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥))
Distinct variable groups:   𝑥,𝑘,𝜑   𝑆,𝑘,𝑥   𝑘,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem itgulm2
Dummy variables 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm2.z . . 3 𝑍 = (ℤ𝑀)
2 itgulm2.m . . 3 (𝜑𝑀 ∈ ℤ)
3 itgulm2.l . . . 4 ((𝜑𝑘𝑍) → (𝑥𝑆𝐴) ∈ 𝐿1)
43fmpttd 6856 . . 3 (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴)):𝑍⟶𝐿1)
5 itgulm2.u . . 3 (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵))
6 itgulm2.s . . 3 (𝜑 → (vol‘𝑆) ∈ ℝ)
71, 2, 4, 5, 6iblulm 25002 . 2 (𝜑 → (𝑥𝑆𝐵) ∈ 𝐿1)
81, 2, 4, 5, 6itgulm 25003 . . 3 (𝜑 → (𝑛𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧) ⇝ ∫𝑆((𝑥𝑆𝐵)‘𝑧) d𝑧)
9 nfcv 2955 . . . . . 6 𝑘𝑆
10 nffvmpt1 6656 . . . . . . 7 𝑘((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)
11 nfcv 2955 . . . . . . 7 𝑘𝑧
1210, 11nffv 6655 . . . . . 6 𝑘(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧)
139, 12nfitg 24378 . . . . 5 𝑘𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧
14 nfcv 2955 . . . . 5 𝑛𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥
15 fveq2 6645 . . . . . . 7 (𝑧 = 𝑥 → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) = (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥))
16 nfcv 2955 . . . . . . . . . 10 𝑥𝑍
17 nfmpt1 5128 . . . . . . . . . 10 𝑥(𝑥𝑆𝐴)
1816, 17nfmpt 5127 . . . . . . . . 9 𝑥(𝑘𝑍 ↦ (𝑥𝑆𝐴))
19 nfcv 2955 . . . . . . . . 9 𝑥𝑛
2018, 19nffv 6655 . . . . . . . 8 𝑥((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)
21 nfcv 2955 . . . . . . . 8 𝑥𝑧
2220, 21nffv 6655 . . . . . . 7 𝑥(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧)
23 nfcv 2955 . . . . . . 7 𝑧(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥)
2415, 22, 23cbvitg 24379 . . . . . 6 𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧 = ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥) d𝑥
25 fveq2 6645 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛) = ((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘))
2625fveq1d 6647 . . . . . . . 8 (𝑛 = 𝑘 → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥) = (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥))
2726adantr 484 . . . . . . 7 ((𝑛 = 𝑘𝑥𝑆) → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥) = (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥))
2827itgeq2dv 24385 . . . . . 6 (𝑛 = 𝑘 → ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥) d𝑥 = ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥)
2924, 28syl5eq 2845 . . . . 5 (𝑛 = 𝑘 → ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧 = ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥)
3013, 14, 29cbvmpt 5131 . . . 4 (𝑛𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧) = (𝑘𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥)
31 simplr 768 . . . . . . . . 9 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → 𝑘𝑍)
32 ulmscl 24974 . . . . . . . . . . 11 ((𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵) → 𝑆 ∈ V)
33 mptexg 6961 . . . . . . . . . . 11 (𝑆 ∈ V → (𝑥𝑆𝐴) ∈ V)
345, 32, 333syl 18 . . . . . . . . . 10 (𝜑 → (𝑥𝑆𝐴) ∈ V)
3534ad2antrr 725 . . . . . . . . 9 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (𝑥𝑆𝐴) ∈ V)
36 eqid 2798 . . . . . . . . . 10 (𝑘𝑍 ↦ (𝑥𝑆𝐴)) = (𝑘𝑍 ↦ (𝑥𝑆𝐴))
3736fvmpt2 6756 . . . . . . . . 9 ((𝑘𝑍 ∧ (𝑥𝑆𝐴) ∈ V) → ((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘) = (𝑥𝑆𝐴))
3831, 35, 37syl2anc 587 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘) = (𝑥𝑆𝐴))
3938fveq1d 6647 . . . . . . 7 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) = ((𝑥𝑆𝐴)‘𝑥))
40 simpr 488 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → 𝑥𝑆)
4134ralrimivw 3150 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝑍 (𝑥𝑆𝐴) ∈ V)
4236fnmpt 6460 . . . . . . . . . . . . 13 (∀𝑘𝑍 (𝑥𝑆𝐴) ∈ V → (𝑘𝑍 ↦ (𝑥𝑆𝐴)) Fn 𝑍)
4341, 42syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴)) Fn 𝑍)
44 ulmf2 24979 . . . . . . . . . . . 12 (((𝑘𝑍 ↦ (𝑥𝑆𝐴)) Fn 𝑍 ∧ (𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵)) → (𝑘𝑍 ↦ (𝑥𝑆𝐴)):𝑍⟶(ℂ ↑m 𝑆))
4543, 5, 44syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴)):𝑍⟶(ℂ ↑m 𝑆))
4645fvmptelrn 6854 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝑥𝑆𝐴) ∈ (ℂ ↑m 𝑆))
47 elmapi 8411 . . . . . . . . . 10 ((𝑥𝑆𝐴) ∈ (ℂ ↑m 𝑆) → (𝑥𝑆𝐴):𝑆⟶ℂ)
4846, 47syl 17 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑥𝑆𝐴):𝑆⟶ℂ)
4948fvmptelrn 6854 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → 𝐴 ∈ ℂ)
50 eqid 2798 . . . . . . . . 9 (𝑥𝑆𝐴) = (𝑥𝑆𝐴)
5150fvmpt2 6756 . . . . . . . 8 ((𝑥𝑆𝐴 ∈ ℂ) → ((𝑥𝑆𝐴)‘𝑥) = 𝐴)
5240, 49, 51syl2anc 587 . . . . . . 7 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((𝑥𝑆𝐴)‘𝑥) = 𝐴)
5339, 52eqtrd 2833 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) = 𝐴)
5453itgeq2dv 24385 . . . . 5 ((𝜑𝑘𝑍) → ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥 = ∫𝑆𝐴 d𝑥)
5554mpteq2dva 5125 . . . 4 (𝜑 → (𝑘𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥) = (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥))
5630, 55syl5eq 2845 . . 3 (𝜑 → (𝑛𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧) = (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥))
57 fveq2 6645 . . . . 5 (𝑧 = 𝑥 → ((𝑥𝑆𝐵)‘𝑧) = ((𝑥𝑆𝐵)‘𝑥))
58 nffvmpt1 6656 . . . . 5 𝑥((𝑥𝑆𝐵)‘𝑧)
59 nfcv 2955 . . . . 5 𝑧((𝑥𝑆𝐵)‘𝑥)
6057, 58, 59cbvitg 24379 . . . 4 𝑆((𝑥𝑆𝐵)‘𝑧) d𝑧 = ∫𝑆((𝑥𝑆𝐵)‘𝑥) d𝑥
61 simpr 488 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝑆)
62 ulmcl 24976 . . . . . . . 8 ((𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵) → (𝑥𝑆𝐵):𝑆⟶ℂ)
635, 62syl 17 . . . . . . 7 (𝜑 → (𝑥𝑆𝐵):𝑆⟶ℂ)
6463fvmptelrn 6854 . . . . . 6 ((𝜑𝑥𝑆) → 𝐵 ∈ ℂ)
65 eqid 2798 . . . . . . 7 (𝑥𝑆𝐵) = (𝑥𝑆𝐵)
6665fvmpt2 6756 . . . . . 6 ((𝑥𝑆𝐵 ∈ ℂ) → ((𝑥𝑆𝐵)‘𝑥) = 𝐵)
6761, 64, 66syl2anc 587 . . . . 5 ((𝜑𝑥𝑆) → ((𝑥𝑆𝐵)‘𝑥) = 𝐵)
6867itgeq2dv 24385 . . . 4 (𝜑 → ∫𝑆((𝑥𝑆𝐵)‘𝑥) d𝑥 = ∫𝑆𝐵 d𝑥)
6960, 68syl5eq 2845 . . 3 (𝜑 → ∫𝑆((𝑥𝑆𝐵)‘𝑧) d𝑧 = ∫𝑆𝐵 d𝑥)
708, 56, 693brtr3d 5061 . 2 (𝜑 → (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥)
717, 70jca 515 1 (𝜑 → ((𝑥𝑆𝐵) ∈ 𝐿1 ∧ (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441   class class class wbr 5030  cmpt 5110   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  cc 10524  cr 10525  cz 11969  cuz 12231  cli 14833  volcvol 24067  𝐿1cibl 24221  citg 24222  𝑢culm 24971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-itg 24227  df-0p 24274  df-ulm 24972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator