MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgulm2 Structured version   Visualization version   GIF version

Theorem itgulm2 26452
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
itgulm2.z 𝑍 = (ℤ𝑀)
itgulm2.m (𝜑𝑀 ∈ ℤ)
itgulm2.l ((𝜑𝑘𝑍) → (𝑥𝑆𝐴) ∈ 𝐿1)
itgulm2.u (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵))
itgulm2.s (𝜑 → (vol‘𝑆) ∈ ℝ)
Assertion
Ref Expression
itgulm2 (𝜑 → ((𝑥𝑆𝐵) ∈ 𝐿1 ∧ (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥))
Distinct variable groups:   𝑥,𝑘,𝜑   𝑆,𝑘,𝑥   𝑘,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem itgulm2
Dummy variables 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm2.z . . 3 𝑍 = (ℤ𝑀)
2 itgulm2.m . . 3 (𝜑𝑀 ∈ ℤ)
3 itgulm2.l . . . 4 ((𝜑𝑘𝑍) → (𝑥𝑆𝐴) ∈ 𝐿1)
43fmpttd 7135 . . 3 (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴)):𝑍⟶𝐿1)
5 itgulm2.u . . 3 (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵))
6 itgulm2.s . . 3 (𝜑 → (vol‘𝑆) ∈ ℝ)
71, 2, 4, 5, 6iblulm 26450 . 2 (𝜑 → (𝑥𝑆𝐵) ∈ 𝐿1)
81, 2, 4, 5, 6itgulm 26451 . . 3 (𝜑 → (𝑛𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧) ⇝ ∫𝑆((𝑥𝑆𝐵)‘𝑧) d𝑧)
9 nfcv 2905 . . . . . 6 𝑘𝑆
10 nffvmpt1 6917 . . . . . . 7 𝑘((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)
11 nfcv 2905 . . . . . . 7 𝑘𝑧
1210, 11nffv 6916 . . . . . 6 𝑘(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧)
139, 12nfitg 25810 . . . . 5 𝑘𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧
14 nfcv 2905 . . . . 5 𝑛𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥
15 fveq2 6906 . . . . . . 7 (𝑧 = 𝑥 → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) = (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥))
16 nfcv 2905 . . . . . . . . . 10 𝑥𝑍
17 nfmpt1 5250 . . . . . . . . . 10 𝑥(𝑥𝑆𝐴)
1816, 17nfmpt 5249 . . . . . . . . 9 𝑥(𝑘𝑍 ↦ (𝑥𝑆𝐴))
19 nfcv 2905 . . . . . . . . 9 𝑥𝑛
2018, 19nffv 6916 . . . . . . . 8 𝑥((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)
21 nfcv 2905 . . . . . . . 8 𝑥𝑧
2220, 21nffv 6916 . . . . . . 7 𝑥(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧)
23 nfcv 2905 . . . . . . 7 𝑧(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥)
2415, 22, 23cbvitg 25811 . . . . . 6 𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧 = ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥) d𝑥
25 fveq2 6906 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛) = ((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘))
2625fveq1d 6908 . . . . . . . 8 (𝑛 = 𝑘 → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥) = (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥))
2726adantr 480 . . . . . . 7 ((𝑛 = 𝑘𝑥𝑆) → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥) = (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥))
2827itgeq2dv 25817 . . . . . 6 (𝑛 = 𝑘 → ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑥) d𝑥 = ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥)
2924, 28eqtrid 2789 . . . . 5 (𝑛 = 𝑘 → ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧 = ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥)
3013, 14, 29cbvmpt 5253 . . . 4 (𝑛𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧) = (𝑘𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥)
31 simplr 769 . . . . . . . . 9 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → 𝑘𝑍)
32 ulmscl 26422 . . . . . . . . . . 11 ((𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵) → 𝑆 ∈ V)
33 mptexg 7241 . . . . . . . . . . 11 (𝑆 ∈ V → (𝑥𝑆𝐴) ∈ V)
345, 32, 333syl 18 . . . . . . . . . 10 (𝜑 → (𝑥𝑆𝐴) ∈ V)
3534ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (𝑥𝑆𝐴) ∈ V)
36 eqid 2737 . . . . . . . . . 10 (𝑘𝑍 ↦ (𝑥𝑆𝐴)) = (𝑘𝑍 ↦ (𝑥𝑆𝐴))
3736fvmpt2 7027 . . . . . . . . 9 ((𝑘𝑍 ∧ (𝑥𝑆𝐴) ∈ V) → ((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘) = (𝑥𝑆𝐴))
3831, 35, 37syl2anc 584 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘) = (𝑥𝑆𝐴))
3938fveq1d 6908 . . . . . . 7 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) = ((𝑥𝑆𝐴)‘𝑥))
40 simpr 484 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → 𝑥𝑆)
4134ralrimivw 3150 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝑍 (𝑥𝑆𝐴) ∈ V)
4236fnmpt 6708 . . . . . . . . . . . . 13 (∀𝑘𝑍 (𝑥𝑆𝐴) ∈ V → (𝑘𝑍 ↦ (𝑥𝑆𝐴)) Fn 𝑍)
4341, 42syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴)) Fn 𝑍)
44 ulmf2 26427 . . . . . . . . . . . 12 (((𝑘𝑍 ↦ (𝑥𝑆𝐴)) Fn 𝑍 ∧ (𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵)) → (𝑘𝑍 ↦ (𝑥𝑆𝐴)):𝑍⟶(ℂ ↑m 𝑆))
4543, 5, 44syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑘𝑍 ↦ (𝑥𝑆𝐴)):𝑍⟶(ℂ ↑m 𝑆))
4645fvmptelcdm 7133 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝑥𝑆𝐴) ∈ (ℂ ↑m 𝑆))
47 elmapi 8889 . . . . . . . . . 10 ((𝑥𝑆𝐴) ∈ (ℂ ↑m 𝑆) → (𝑥𝑆𝐴):𝑆⟶ℂ)
4846, 47syl 17 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑥𝑆𝐴):𝑆⟶ℂ)
4948fvmptelcdm 7133 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → 𝐴 ∈ ℂ)
50 eqid 2737 . . . . . . . . 9 (𝑥𝑆𝐴) = (𝑥𝑆𝐴)
5150fvmpt2 7027 . . . . . . . 8 ((𝑥𝑆𝐴 ∈ ℂ) → ((𝑥𝑆𝐴)‘𝑥) = 𝐴)
5240, 49, 51syl2anc 584 . . . . . . 7 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → ((𝑥𝑆𝐴)‘𝑥) = 𝐴)
5339, 52eqtrd 2777 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑥𝑆) → (((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) = 𝐴)
5453itgeq2dv 25817 . . . . 5 ((𝜑𝑘𝑍) → ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥 = ∫𝑆𝐴 d𝑥)
5554mpteq2dva 5242 . . . 4 (𝜑 → (𝑘𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑘)‘𝑥) d𝑥) = (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥))
5630, 55eqtrid 2789 . . 3 (𝜑 → (𝑛𝑍 ↦ ∫𝑆(((𝑘𝑍 ↦ (𝑥𝑆𝐴))‘𝑛)‘𝑧) d𝑧) = (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥))
57 fveq2 6906 . . . . 5 (𝑧 = 𝑥 → ((𝑥𝑆𝐵)‘𝑧) = ((𝑥𝑆𝐵)‘𝑥))
58 nffvmpt1 6917 . . . . 5 𝑥((𝑥𝑆𝐵)‘𝑧)
59 nfcv 2905 . . . . 5 𝑧((𝑥𝑆𝐵)‘𝑥)
6057, 58, 59cbvitg 25811 . . . 4 𝑆((𝑥𝑆𝐵)‘𝑧) d𝑧 = ∫𝑆((𝑥𝑆𝐵)‘𝑥) d𝑥
61 simpr 484 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝑆)
62 ulmcl 26424 . . . . . . . 8 ((𝑘𝑍 ↦ (𝑥𝑆𝐴))(⇝𝑢𝑆)(𝑥𝑆𝐵) → (𝑥𝑆𝐵):𝑆⟶ℂ)
635, 62syl 17 . . . . . . 7 (𝜑 → (𝑥𝑆𝐵):𝑆⟶ℂ)
6463fvmptelcdm 7133 . . . . . 6 ((𝜑𝑥𝑆) → 𝐵 ∈ ℂ)
65 eqid 2737 . . . . . . 7 (𝑥𝑆𝐵) = (𝑥𝑆𝐵)
6665fvmpt2 7027 . . . . . 6 ((𝑥𝑆𝐵 ∈ ℂ) → ((𝑥𝑆𝐵)‘𝑥) = 𝐵)
6761, 64, 66syl2anc 584 . . . . 5 ((𝜑𝑥𝑆) → ((𝑥𝑆𝐵)‘𝑥) = 𝐵)
6867itgeq2dv 25817 . . . 4 (𝜑 → ∫𝑆((𝑥𝑆𝐵)‘𝑥) d𝑥 = ∫𝑆𝐵 d𝑥)
6960, 68eqtrid 2789 . . 3 (𝜑 → ∫𝑆((𝑥𝑆𝐵)‘𝑧) d𝑧 = ∫𝑆𝐵 d𝑥)
708, 56, 693brtr3d 5174 . 2 (𝜑 → (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥)
717, 70jca 511 1 (𝜑 → ((𝑥𝑆𝐵) ∈ 𝐿1 ∧ (𝑘𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480   class class class wbr 5143  cmpt 5225   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  cc 11153  cr 11154  cz 12613  cuz 12878  cli 15520  volcvol 25498  𝐿1cibl 25652  citg 25653  𝑢culm 26419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cn 23235  df-cnp 23236  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-itg 25658  df-0p 25705  df-ulm 26420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator