MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmf Structured version   Visualization version   GIF version

Theorem ulmf 25885
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmf (𝐹(β‡π‘’β€˜π‘†)𝐺 β†’ βˆƒπ‘› ∈ β„€ 𝐹:(β„€β‰₯β€˜π‘›)⟢(β„‚ ↑m 𝑆))
Distinct variable groups:   𝑛,𝐹   𝑛,𝐺   𝑆,𝑛

Proof of Theorem ulmf
Dummy variables 𝑗 π‘˜ π‘₯ 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmscl 25882 . . . 4 (𝐹(β‡π‘’β€˜π‘†)𝐺 β†’ 𝑆 ∈ V)
2 ulmval 25883 . . . 4 (𝑆 ∈ V β†’ (𝐹(β‡π‘’β€˜π‘†)𝐺 ↔ βˆƒπ‘› ∈ β„€ (𝐹:(β„€β‰₯β€˜π‘›)⟢(β„‚ ↑m 𝑆) ∧ 𝐺:π‘†βŸΆβ„‚ ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘›)βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)βˆ€π‘§ ∈ 𝑆 (absβ€˜(((πΉβ€˜π‘˜)β€˜π‘§) βˆ’ (πΊβ€˜π‘§))) < π‘₯)))
31, 2syl 17 . . 3 (𝐹(β‡π‘’β€˜π‘†)𝐺 β†’ (𝐹(β‡π‘’β€˜π‘†)𝐺 ↔ βˆƒπ‘› ∈ β„€ (𝐹:(β„€β‰₯β€˜π‘›)⟢(β„‚ ↑m 𝑆) ∧ 𝐺:π‘†βŸΆβ„‚ ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘›)βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)βˆ€π‘§ ∈ 𝑆 (absβ€˜(((πΉβ€˜π‘˜)β€˜π‘§) βˆ’ (πΊβ€˜π‘§))) < π‘₯)))
43ibi 266 . 2 (𝐹(β‡π‘’β€˜π‘†)𝐺 β†’ βˆƒπ‘› ∈ β„€ (𝐹:(β„€β‰₯β€˜π‘›)⟢(β„‚ ↑m 𝑆) ∧ 𝐺:π‘†βŸΆβ„‚ ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘›)βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)βˆ€π‘§ ∈ 𝑆 (absβ€˜(((πΉβ€˜π‘˜)β€˜π‘§) βˆ’ (πΊβ€˜π‘§))) < π‘₯))
5 simp1 1136 . . 3 ((𝐹:(β„€β‰₯β€˜π‘›)⟢(β„‚ ↑m 𝑆) ∧ 𝐺:π‘†βŸΆβ„‚ ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘›)βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)βˆ€π‘§ ∈ 𝑆 (absβ€˜(((πΉβ€˜π‘˜)β€˜π‘§) βˆ’ (πΊβ€˜π‘§))) < π‘₯) β†’ 𝐹:(β„€β‰₯β€˜π‘›)⟢(β„‚ ↑m 𝑆))
65reximi 3084 . 2 (βˆƒπ‘› ∈ β„€ (𝐹:(β„€β‰₯β€˜π‘›)⟢(β„‚ ↑m 𝑆) ∧ 𝐺:π‘†βŸΆβ„‚ ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘›)βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)βˆ€π‘§ ∈ 𝑆 (absβ€˜(((πΉβ€˜π‘˜)β€˜π‘§) βˆ’ (πΊβ€˜π‘§))) < π‘₯) β†’ βˆƒπ‘› ∈ β„€ 𝐹:(β„€β‰₯β€˜π‘›)⟢(β„‚ ↑m 𝑆))
74, 6syl 17 1 (𝐹(β‡π‘’β€˜π‘†)𝐺 β†’ βˆƒπ‘› ∈ β„€ 𝐹:(β„€β‰₯β€˜π‘›)⟢(β„‚ ↑m 𝑆))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ w3a 1087   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   class class class wbr 5147  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ↑m cmap 8816  β„‚cc 11104   < clt 11244   βˆ’ cmin 11440  β„€cz 12554  β„€β‰₯cuz 12818  β„+crp 12970  abscabs 15177  β‡π‘’culm 25879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-pm 8819  df-neg 11443  df-z 12555  df-uz 12819  df-ulm 25880
This theorem is referenced by:  ulmpm  25886  ulmuni  25895  ulmss  25900
  Copyright terms: Public domain W3C validator