Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ulmclm | Structured version Visualization version GIF version |
Description: A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015.) |
Ref | Expression |
---|---|
ulmclm.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
ulmclm.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
ulmclm.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
ulmclm.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
ulmclm.h | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
ulmclm.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)‘𝐴) = (𝐻‘𝑘)) |
ulmclm.u | ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) |
Ref | Expression |
---|---|
ulmclm | ⊢ (𝜑 → 𝐻 ⇝ (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmclm.u | . 2 ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) | |
2 | ulmclm.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | fveq2 6756 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝐴 → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝐴)) | |
4 | fveq2 6756 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝐴 → (𝐺‘𝑧) = (𝐺‘𝐴)) | |
5 | 3, 4 | oveq12d 7273 | . . . . . . . . . 10 ⊢ (𝑧 = 𝐴 → (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)) = (((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) |
6 | 5 | fveq2d 6760 | . . . . . . . . 9 ⊢ (𝑧 = 𝐴 → (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) = (abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴)))) |
7 | 6 | breq1d 5080 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → ((abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
8 | 7 | rspcv 3547 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑆 → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → (abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
9 | 2, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → (abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
10 | 9 | ralimdv 3103 | . . . . 5 ⊢ (𝜑 → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
11 | 10 | reximdv 3201 | . . . 4 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
12 | 11 | ralimdv 3103 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
13 | ulmclm.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
14 | ulmclm.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
15 | ulmclm.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | |
16 | eqidd 2739 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝑧)) | |
17 | eqidd 2739 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
18 | ulmcl 25445 | . . . . 5 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | |
19 | 1, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
20 | ulmscl 25443 | . . . . 5 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) | |
21 | 1, 20 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
22 | 13, 14, 15, 16, 17, 19, 21 | ulm2 25449 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
23 | ulmclm.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
24 | ulmclm.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)‘𝐴) = (𝐻‘𝑘)) | |
25 | 24 | eqcomd 2744 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)‘𝐴)) |
26 | 19, 2 | ffvelrnd 6944 | . . . 4 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℂ) |
27 | 15 | ffvelrnda 6943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
28 | elmapi 8595 | . . . . . 6 ⊢ ((𝐹‘𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹‘𝑘):𝑆⟶ℂ) | |
29 | 27, 28 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘):𝑆⟶ℂ) |
30 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ 𝑆) |
31 | 29, 30 | ffvelrnd 6944 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)‘𝐴) ∈ ℂ) |
32 | 13, 14, 23, 25, 26, 31 | clim2c 15142 | . . 3 ⊢ (𝜑 → (𝐻 ⇝ (𝐺‘𝐴) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
33 | 12, 22, 32 | 3imtr4d 293 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐻 ⇝ (𝐺‘𝐴))) |
34 | 1, 33 | mpd 15 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐺‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℂcc 10800 < clt 10940 − cmin 11135 ℤcz 12249 ℤ≥cuz 12511 ℝ+crp 12659 abscabs 14873 ⇝ cli 15121 ⇝𝑢culm 25440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-z 12250 df-uz 12512 df-clim 15125 df-ulm 25441 |
This theorem is referenced by: ulmuni 25456 ulmdvlem3 25466 mbfulm 25470 pserulm 25486 lgamgulm2 26090 lgamcvglem 26094 knoppcnlem9 34608 knoppndvlem4 34622 |
Copyright terms: Public domain | W3C validator |