![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmclm | Structured version Visualization version GIF version |
Description: A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015.) |
Ref | Expression |
---|---|
ulmclm.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
ulmclm.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
ulmclm.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
ulmclm.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
ulmclm.h | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
ulmclm.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)‘𝐴) = (𝐻‘𝑘)) |
ulmclm.u | ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) |
Ref | Expression |
---|---|
ulmclm | ⊢ (𝜑 → 𝐻 ⇝ (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmclm.u | . 2 ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) | |
2 | ulmclm.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | fveq2 6896 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝐴 → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝐴)) | |
4 | fveq2 6896 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝐴 → (𝐺‘𝑧) = (𝐺‘𝐴)) | |
5 | 3, 4 | oveq12d 7437 | . . . . . . . . . 10 ⊢ (𝑧 = 𝐴 → (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)) = (((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) |
6 | 5 | fveq2d 6900 | . . . . . . . . 9 ⊢ (𝑧 = 𝐴 → (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) = (abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴)))) |
7 | 6 | breq1d 5159 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → ((abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
8 | 7 | rspcv 3602 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑆 → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → (abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
9 | 2, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → (abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
10 | 9 | ralimdv 3158 | . . . . 5 ⊢ (𝜑 → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
11 | 10 | reximdv 3159 | . . . 4 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
12 | 11 | ralimdv 3158 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
13 | ulmclm.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
14 | ulmclm.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
15 | ulmclm.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | |
16 | eqidd 2726 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝑧)) | |
17 | eqidd 2726 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
18 | ulmcl 26362 | . . . . 5 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | |
19 | 1, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
20 | ulmscl 26360 | . . . . 5 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) | |
21 | 1, 20 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
22 | 13, 14, 15, 16, 17, 19, 21 | ulm2 26366 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
23 | ulmclm.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
24 | ulmclm.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)‘𝐴) = (𝐻‘𝑘)) | |
25 | 24 | eqcomd 2731 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)‘𝐴)) |
26 | 19, 2 | ffvelcdmd 7094 | . . . 4 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℂ) |
27 | 15 | ffvelcdmda 7093 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
28 | elmapi 8868 | . . . . . 6 ⊢ ((𝐹‘𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹‘𝑘):𝑆⟶ℂ) | |
29 | 27, 28 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘):𝑆⟶ℂ) |
30 | 2 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ 𝑆) |
31 | 29, 30 | ffvelcdmd 7094 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)‘𝐴) ∈ ℂ) |
32 | 13, 14, 23, 25, 26, 31 | clim2c 15485 | . . 3 ⊢ (𝜑 → (𝐻 ⇝ (𝐺‘𝐴) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
33 | 12, 22, 32 | 3imtr4d 293 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐻 ⇝ (𝐺‘𝐴))) |
34 | 1, 33 | mpd 15 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐺‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 Vcvv 3461 class class class wbr 5149 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ↑m cmap 8845 ℂcc 11138 < clt 11280 − cmin 11476 ℤcz 12591 ℤ≥cuz 12855 ℝ+crp 13009 abscabs 15217 ⇝ cli 15464 ⇝𝑢culm 26357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-pre-lttri 11214 ax-pre-lttrn 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-neg 11479 df-z 12592 df-uz 12856 df-clim 15468 df-ulm 26358 |
This theorem is referenced by: ulmuni 26373 ulmdvlem3 26383 mbfulm 26387 pserulm 26403 lgamgulm2 27013 lgamcvglem 27017 knoppcnlem9 36107 knoppndvlem4 36121 |
Copyright terms: Public domain | W3C validator |