MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmclm Structured version   Visualization version   GIF version

Theorem ulmclm 26448
Description: A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmclm.z 𝑍 = (ℤ𝑀)
ulmclm.m (𝜑𝑀 ∈ ℤ)
ulmclm.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulmclm.a (𝜑𝐴𝑆)
ulmclm.h (𝜑𝐻𝑊)
ulmclm.e ((𝜑𝑘𝑍) → ((𝐹𝑘)‘𝐴) = (𝐻𝑘))
ulmclm.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmclm (𝜑𝐻 ⇝ (𝐺𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝐻   𝑘,𝑀   𝑆,𝑘   𝑘,𝑍
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem ulmclm
Dummy variables 𝑗 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmclm.u . 2 (𝜑𝐹(⇝𝑢𝑆)𝐺)
2 ulmclm.a . . . . . . 7 (𝜑𝐴𝑆)
3 fveq2 6920 . . . . . . . . . . 11 (𝑧 = 𝐴 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝐴))
4 fveq2 6920 . . . . . . . . . . 11 (𝑧 = 𝐴 → (𝐺𝑧) = (𝐺𝐴))
53, 4oveq12d 7466 . . . . . . . . . 10 (𝑧 = 𝐴 → (((𝐹𝑘)‘𝑧) − (𝐺𝑧)) = (((𝐹𝑘)‘𝐴) − (𝐺𝐴)))
65fveq2d 6924 . . . . . . . . 9 (𝑧 = 𝐴 → (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) = (abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))))
76breq1d 5176 . . . . . . . 8 (𝑧 = 𝐴 → ((abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
87rspcv 3631 . . . . . . 7 (𝐴𝑆 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 → (abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
92, 8syl 17 . . . . . 6 (𝜑 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 → (abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
109ralimdv 3175 . . . . 5 (𝜑 → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
1110reximdv 3176 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
1211ralimdv 3175 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
13 ulmclm.z . . . 4 𝑍 = (ℤ𝑀)
14 ulmclm.m . . . 4 (𝜑𝑀 ∈ ℤ)
15 ulmclm.f . . . 4 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
16 eqidd 2741 . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
17 eqidd 2741 . . . 4 ((𝜑𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
18 ulmcl 26442 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
191, 18syl 17 . . . 4 (𝜑𝐺:𝑆⟶ℂ)
20 ulmscl 26440 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
211, 20syl 17 . . . 4 (𝜑𝑆 ∈ V)
2213, 14, 15, 16, 17, 19, 21ulm2 26446 . . 3 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
23 ulmclm.h . . . 4 (𝜑𝐻𝑊)
24 ulmclm.e . . . . 5 ((𝜑𝑘𝑍) → ((𝐹𝑘)‘𝐴) = (𝐻𝑘))
2524eqcomd 2746 . . . 4 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘)‘𝐴))
2619, 2ffvelcdmd 7119 . . . 4 (𝜑 → (𝐺𝐴) ∈ ℂ)
2715ffvelcdmda 7118 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
28 elmapi 8907 . . . . . 6 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2927, 28syl 17 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘):𝑆⟶ℂ)
302adantr 480 . . . . 5 ((𝜑𝑘𝑍) → 𝐴𝑆)
3129, 30ffvelcdmd 7119 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘)‘𝐴) ∈ ℂ)
3213, 14, 23, 25, 26, 31clim2c 15551 . . 3 (𝜑 → (𝐻 ⇝ (𝐺𝐴) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
3312, 22, 323imtr4d 294 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻 ⇝ (𝐺𝐴)))
341, 33mpd 15 1 (𝜑𝐻 ⇝ (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182   < clt 11324  cmin 11520  cz 12639  cuz 12903  +crp 13057  abscabs 15283  cli 15530  𝑢culm 26437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-neg 11523  df-z 12640  df-uz 12904  df-clim 15534  df-ulm 26438
This theorem is referenced by:  ulmuni  26453  ulmdvlem3  26463  mbfulm  26467  pserulm  26483  lgamgulm2  27097  lgamcvglem  27101  knoppcnlem9  36467  knoppndvlem4  36481
  Copyright terms: Public domain W3C validator