Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ulmclm | Structured version Visualization version GIF version |
Description: A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015.) |
Ref | Expression |
---|---|
ulmclm.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
ulmclm.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
ulmclm.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
ulmclm.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
ulmclm.h | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
ulmclm.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)‘𝐴) = (𝐻‘𝑘)) |
ulmclm.u | ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) |
Ref | Expression |
---|---|
ulmclm | ⊢ (𝜑 → 𝐻 ⇝ (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmclm.u | . 2 ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) | |
2 | ulmclm.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | fveq2 6774 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝐴 → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝐴)) | |
4 | fveq2 6774 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝐴 → (𝐺‘𝑧) = (𝐺‘𝐴)) | |
5 | 3, 4 | oveq12d 7293 | . . . . . . . . . 10 ⊢ (𝑧 = 𝐴 → (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)) = (((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) |
6 | 5 | fveq2d 6778 | . . . . . . . . 9 ⊢ (𝑧 = 𝐴 → (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) = (abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴)))) |
7 | 6 | breq1d 5084 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → ((abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
8 | 7 | rspcv 3557 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑆 → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → (abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
9 | 2, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → (abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
10 | 9 | ralimdv 3109 | . . . . 5 ⊢ (𝜑 → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
11 | 10 | reximdv 3202 | . . . 4 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
12 | 11 | ralimdv 3109 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
13 | ulmclm.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
14 | ulmclm.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
15 | ulmclm.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | |
16 | eqidd 2739 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝑧)) | |
17 | eqidd 2739 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
18 | ulmcl 25540 | . . . . 5 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | |
19 | 1, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
20 | ulmscl 25538 | . . . . 5 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) | |
21 | 1, 20 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
22 | 13, 14, 15, 16, 17, 19, 21 | ulm2 25544 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
23 | ulmclm.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
24 | ulmclm.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)‘𝐴) = (𝐻‘𝑘)) | |
25 | 24 | eqcomd 2744 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)‘𝐴)) |
26 | 19, 2 | ffvelrnd 6962 | . . . 4 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℂ) |
27 | 15 | ffvelrnda 6961 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
28 | elmapi 8637 | . . . . . 6 ⊢ ((𝐹‘𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹‘𝑘):𝑆⟶ℂ) | |
29 | 27, 28 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘):𝑆⟶ℂ) |
30 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ 𝑆) |
31 | 29, 30 | ffvelrnd 6962 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)‘𝐴) ∈ ℂ) |
32 | 13, 14, 23, 25, 26, 31 | clim2c 15214 | . . 3 ⊢ (𝜑 → (𝐻 ⇝ (𝐺‘𝐴) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
33 | 12, 22, 32 | 3imtr4d 294 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐻 ⇝ (𝐺‘𝐴))) |
34 | 1, 33 | mpd 15 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐺‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 Vcvv 3432 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 ℂcc 10869 < clt 11009 − cmin 11205 ℤcz 12319 ℤ≥cuz 12582 ℝ+crp 12730 abscabs 14945 ⇝ cli 15193 ⇝𝑢culm 25535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-neg 11208 df-z 12320 df-uz 12583 df-clim 15197 df-ulm 25536 |
This theorem is referenced by: ulmuni 25551 ulmdvlem3 25561 mbfulm 25565 pserulm 25581 lgamgulm2 26185 lgamcvglem 26189 knoppcnlem9 34681 knoppndvlem4 34695 |
Copyright terms: Public domain | W3C validator |