MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmclm Structured version   Visualization version   GIF version

Theorem ulmclm 26368
Description: A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmclm.z 𝑍 = (ℤ𝑀)
ulmclm.m (𝜑𝑀 ∈ ℤ)
ulmclm.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulmclm.a (𝜑𝐴𝑆)
ulmclm.h (𝜑𝐻𝑊)
ulmclm.e ((𝜑𝑘𝑍) → ((𝐹𝑘)‘𝐴) = (𝐻𝑘))
ulmclm.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmclm (𝜑𝐻 ⇝ (𝐺𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝐻   𝑘,𝑀   𝑆,𝑘   𝑘,𝑍
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem ulmclm
Dummy variables 𝑗 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmclm.u . 2 (𝜑𝐹(⇝𝑢𝑆)𝐺)
2 ulmclm.a . . . . . . 7 (𝜑𝐴𝑆)
3 fveq2 6896 . . . . . . . . . . 11 (𝑧 = 𝐴 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝐴))
4 fveq2 6896 . . . . . . . . . . 11 (𝑧 = 𝐴 → (𝐺𝑧) = (𝐺𝐴))
53, 4oveq12d 7437 . . . . . . . . . 10 (𝑧 = 𝐴 → (((𝐹𝑘)‘𝑧) − (𝐺𝑧)) = (((𝐹𝑘)‘𝐴) − (𝐺𝐴)))
65fveq2d 6900 . . . . . . . . 9 (𝑧 = 𝐴 → (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) = (abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))))
76breq1d 5159 . . . . . . . 8 (𝑧 = 𝐴 → ((abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
87rspcv 3602 . . . . . . 7 (𝐴𝑆 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 → (abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
92, 8syl 17 . . . . . 6 (𝜑 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 → (abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
109ralimdv 3158 . . . . 5 (𝜑 → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
1110reximdv 3159 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
1211ralimdv 3158 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
13 ulmclm.z . . . 4 𝑍 = (ℤ𝑀)
14 ulmclm.m . . . 4 (𝜑𝑀 ∈ ℤ)
15 ulmclm.f . . . 4 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
16 eqidd 2726 . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
17 eqidd 2726 . . . 4 ((𝜑𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
18 ulmcl 26362 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
191, 18syl 17 . . . 4 (𝜑𝐺:𝑆⟶ℂ)
20 ulmscl 26360 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
211, 20syl 17 . . . 4 (𝜑𝑆 ∈ V)
2213, 14, 15, 16, 17, 19, 21ulm2 26366 . . 3 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
23 ulmclm.h . . . 4 (𝜑𝐻𝑊)
24 ulmclm.e . . . . 5 ((𝜑𝑘𝑍) → ((𝐹𝑘)‘𝐴) = (𝐻𝑘))
2524eqcomd 2731 . . . 4 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘)‘𝐴))
2619, 2ffvelcdmd 7094 . . . 4 (𝜑 → (𝐺𝐴) ∈ ℂ)
2715ffvelcdmda 7093 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
28 elmapi 8868 . . . . . 6 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2927, 28syl 17 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘):𝑆⟶ℂ)
302adantr 479 . . . . 5 ((𝜑𝑘𝑍) → 𝐴𝑆)
3129, 30ffvelcdmd 7094 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘)‘𝐴) ∈ ℂ)
3213, 14, 23, 25, 26, 31clim2c 15485 . . 3 (𝜑 → (𝐻 ⇝ (𝐺𝐴) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
3312, 22, 323imtr4d 293 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻 ⇝ (𝐺𝐴)))
341, 33mpd 15 1 (𝜑𝐻 ⇝ (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  wrex 3059  Vcvv 3461   class class class wbr 5149  wf 6545  cfv 6549  (class class class)co 7419  m cmap 8845  cc 11138   < clt 11280  cmin 11476  cz 12591  cuz 12855  +crp 13009  abscabs 15217  cli 15464  𝑢culm 26357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-pre-lttri 11214  ax-pre-lttrn 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-neg 11479  df-z 12592  df-uz 12856  df-clim 15468  df-ulm 26358
This theorem is referenced by:  ulmuni  26373  ulmdvlem3  26383  mbfulm  26387  pserulm  26403  lgamgulm2  27013  lgamcvglem  27017  knoppcnlem9  36107  knoppndvlem4  36121
  Copyright terms: Public domain W3C validator