| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulmclm | Structured version Visualization version GIF version | ||
| Description: A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| ulmclm.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ulmclm.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| ulmclm.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| ulmclm.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| ulmclm.h | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
| ulmclm.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)‘𝐴) = (𝐻‘𝑘)) |
| ulmclm.u | ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) |
| Ref | Expression |
|---|---|
| ulmclm | ⊢ (𝜑 → 𝐻 ⇝ (𝐺‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmclm.u | . 2 ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) | |
| 2 | ulmclm.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 3 | fveq2 6822 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝐴 → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝐴)) | |
| 4 | fveq2 6822 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝐴 → (𝐺‘𝑧) = (𝐺‘𝐴)) | |
| 5 | 3, 4 | oveq12d 7367 | . . . . . . . . . 10 ⊢ (𝑧 = 𝐴 → (((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧)) = (((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) |
| 6 | 5 | fveq2d 6826 | . . . . . . . . 9 ⊢ (𝑧 = 𝐴 → (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) = (abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴)))) |
| 7 | 6 | breq1d 5102 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → ((abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
| 8 | 7 | rspcv 3573 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑆 → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → (abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
| 9 | 2, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → (abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
| 10 | 9 | ralimdv 3143 | . . . . 5 ⊢ (𝜑 → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
| 11 | 10 | reximdv 3144 | . . . 4 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
| 12 | 11 | ralimdv 3143 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
| 13 | ulmclm.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 14 | ulmclm.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 15 | ulmclm.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | |
| 16 | eqidd 2730 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝑧)) | |
| 17 | eqidd 2730 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
| 18 | ulmcl 26288 | . . . . 5 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | |
| 19 | 1, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
| 20 | ulmscl 26286 | . . . . 5 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) | |
| 21 | 1, 20 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
| 22 | 13, 14, 15, 16, 17, 19, 21 | ulm2 26292 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥)) |
| 23 | ulmclm.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
| 24 | ulmclm.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)‘𝐴) = (𝐻‘𝑘)) | |
| 25 | 24 | eqcomd 2735 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)‘𝐴)) |
| 26 | 19, 2 | ffvelcdmd 7019 | . . . 4 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℂ) |
| 27 | 15 | ffvelcdmda 7018 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
| 28 | elmapi 8776 | . . . . . 6 ⊢ ((𝐹‘𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹‘𝑘):𝑆⟶ℂ) | |
| 29 | 27, 28 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘):𝑆⟶ℂ) |
| 30 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ 𝑆) |
| 31 | 29, 30 | ffvelcdmd 7019 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)‘𝐴) ∈ ℂ) |
| 32 | 13, 14, 23, 25, 26, 31 | clim2c 15412 | . . 3 ⊢ (𝜑 → (𝐻 ⇝ (𝐺‘𝐴) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝐴) − (𝐺‘𝐴))) < 𝑥)) |
| 33 | 12, 22, 32 | 3imtr4d 294 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐻 ⇝ (𝐺‘𝐴))) |
| 34 | 1, 33 | mpd 15 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐺‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3436 class class class wbr 5092 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 ℂcc 11007 < clt 11149 − cmin 11347 ℤcz 12471 ℤ≥cuz 12735 ℝ+crp 12893 abscabs 15141 ⇝ cli 15391 ⇝𝑢culm 26283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-neg 11350 df-z 12472 df-uz 12736 df-clim 15395 df-ulm 26284 |
| This theorem is referenced by: ulmuni 26299 ulmdvlem3 26309 mbfulm 26313 pserulm 26329 lgamgulm2 26944 lgamcvglem 26948 knoppcnlem9 36479 knoppndvlem4 36493 |
| Copyright terms: Public domain | W3C validator |