MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmres Structured version   Visualization version   GIF version

Theorem ulmres 26446
Description: A sequence of functions converges iff the tail of the sequence converges (for any finite cutoff). (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ulmres.z 𝑍 = (ℤ𝑀)
ulmres.w 𝑊 = (ℤ𝑁)
ulmres.m (𝜑𝑁𝑍)
ulmres.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
Assertion
Ref Expression
ulmres (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺))

Proof of Theorem ulmres
Dummy variables 𝑗 𝑘 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmscl 26437 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
2 ulmcl 26439 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
31, 2jca 511 . . 3 (𝐹(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ))
43a1i 11 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)))
5 ulmscl 26437 . . . 4 ((𝐹𝑊)(⇝𝑢𝑆)𝐺𝑆 ∈ V)
6 ulmcl 26439 . . . 4 ((𝐹𝑊)(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
75, 6jca 511 . . 3 ((𝐹𝑊)(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ))
87a1i 11 . 2 (𝜑 → ((𝐹𝑊)(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)))
9 ulmres.m . . . . . . . . . 10 (𝜑𝑁𝑍)
10 ulmres.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
119, 10eleqtrdi 2849 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
1211adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑁 ∈ (ℤ𝑀))
13 eluzel2 12881 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1412, 13syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑀 ∈ ℤ)
1510rexuz3 15384 . . . . . . 7 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
1614, 15syl 17 . . . . . 6 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
17 eluzelz 12886 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1812, 17syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑁 ∈ ℤ)
19 ulmres.w . . . . . . . 8 𝑊 = (ℤ𝑁)
2019rexuz3 15384 . . . . . . 7 (𝑁 ∈ ℤ → (∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
2118, 20syl 17 . . . . . 6 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
2216, 21bitr4d 282 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
2322ralbidv 3176 . . . 4 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∀𝑟 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
24 ulmres.f . . . . . 6 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
2524adantr 480 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
26 eqidd 2736 . . . . 5 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
27 eqidd 2736 . . . . 5 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
28 simprr 773 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝐺:𝑆⟶ℂ)
29 simprl 771 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑆 ∈ V)
3010, 14, 25, 26, 27, 28, 29ulm2 26443 . . . 4 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
31 uzss 12899 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
3212, 31syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (ℤ𝑁) ⊆ (ℤ𝑀))
3332, 19, 103sstr4g 4041 . . . . . 6 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑊𝑍)
3425, 33fssresd 6776 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (𝐹𝑊):𝑊⟶(ℂ ↑m 𝑆))
35 fvres 6926 . . . . . . 7 (𝑘𝑊 → ((𝐹𝑊)‘𝑘) = (𝐹𝑘))
3635ad2antrl 728 . . . . . 6 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ (𝑘𝑊𝑧𝑆)) → ((𝐹𝑊)‘𝑘) = (𝐹𝑘))
3736fveq1d 6909 . . . . 5 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ (𝑘𝑊𝑧𝑆)) → (((𝐹𝑊)‘𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
3819, 18, 34, 37, 27, 28, 29ulm2 26443 . . . 4 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → ((𝐹𝑊)(⇝𝑢𝑆)𝐺 ↔ ∀𝑟 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
3923, 30, 383bitr4d 311 . . 3 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺))
4039ex 412 . 2 (𝜑 → ((𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ) → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺)))
414, 8, 40pm5.21ndd 379 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  wss 3963   class class class wbr 5148  cres 5691  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  cc 11151   < clt 11293  cmin 11490  cz 12611  cuz 12876  +crp 13032  abscabs 15270  𝑢culm 26434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-neg 11493  df-z 12612  df-uz 12877  df-ulm 26435
This theorem is referenced by:  pserdvlem2  26487
  Copyright terms: Public domain W3C validator