MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmres Structured version   Visualization version   GIF version

Theorem ulmres 24903
Description: A sequence of functions converges iff the tail of the sequence converges (for any finite cutoff). (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ulmres.z 𝑍 = (ℤ𝑀)
ulmres.w 𝑊 = (ℤ𝑁)
ulmres.m (𝜑𝑁𝑍)
ulmres.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
Assertion
Ref Expression
ulmres (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺))

Proof of Theorem ulmres
Dummy variables 𝑗 𝑘 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmscl 24894 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
2 ulmcl 24896 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
31, 2jca 512 . . 3 (𝐹(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ))
43a1i 11 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)))
5 ulmscl 24894 . . . 4 ((𝐹𝑊)(⇝𝑢𝑆)𝐺𝑆 ∈ V)
6 ulmcl 24896 . . . 4 ((𝐹𝑊)(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
75, 6jca 512 . . 3 ((𝐹𝑊)(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ))
87a1i 11 . 2 (𝜑 → ((𝐹𝑊)(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)))
9 ulmres.m . . . . . . . . . 10 (𝜑𝑁𝑍)
10 ulmres.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
119, 10eleqtrdi 2920 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
1211adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑁 ∈ (ℤ𝑀))
13 eluzel2 12236 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1412, 13syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑀 ∈ ℤ)
1510rexuz3 14696 . . . . . . 7 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
1614, 15syl 17 . . . . . 6 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
17 eluzelz 12241 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1812, 17syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑁 ∈ ℤ)
19 ulmres.w . . . . . . . 8 𝑊 = (ℤ𝑁)
2019rexuz3 14696 . . . . . . 7 (𝑁 ∈ ℤ → (∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
2118, 20syl 17 . . . . . 6 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
2216, 21bitr4d 283 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
2322ralbidv 3194 . . . 4 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∀𝑟 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
24 ulmres.f . . . . . 6 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
2524adantr 481 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
26 eqidd 2819 . . . . 5 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
27 eqidd 2819 . . . . 5 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
28 simprr 769 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝐺:𝑆⟶ℂ)
29 simprl 767 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑆 ∈ V)
3010, 14, 25, 26, 27, 28, 29ulm2 24900 . . . 4 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
31 uzss 12253 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
3212, 31syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (ℤ𝑁) ⊆ (ℤ𝑀))
3332, 19, 103sstr4g 4009 . . . . . 6 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑊𝑍)
3425, 33fssresd 6538 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (𝐹𝑊):𝑊⟶(ℂ ↑m 𝑆))
35 fvres 6682 . . . . . . 7 (𝑘𝑊 → ((𝐹𝑊)‘𝑘) = (𝐹𝑘))
3635ad2antrl 724 . . . . . 6 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ (𝑘𝑊𝑧𝑆)) → ((𝐹𝑊)‘𝑘) = (𝐹𝑘))
3736fveq1d 6665 . . . . 5 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ (𝑘𝑊𝑧𝑆)) → (((𝐹𝑊)‘𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
3819, 18, 34, 37, 27, 28, 29ulm2 24900 . . . 4 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → ((𝐹𝑊)(⇝𝑢𝑆)𝐺 ↔ ∀𝑟 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
3923, 30, 383bitr4d 312 . . 3 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺))
4039ex 413 . 2 (𝜑 → ((𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ) → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺)))
414, 8, 40pm5.21ndd 381 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136  Vcvv 3492  wss 3933   class class class wbr 5057  cres 5550  wf 6344  cfv 6348  (class class class)co 7145  m cmap 8395  cc 10523   < clt 10663  cmin 10858  cz 11969  cuz 12231  +crp 12377  abscabs 14581  𝑢culm 24891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-pre-lttri 10599  ax-pre-lttrn 10600
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-neg 10861  df-z 11970  df-uz 12232  df-ulm 24892
This theorem is referenced by:  pserdvlem2  24943
  Copyright terms: Public domain W3C validator