MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmres Structured version   Visualization version   GIF version

Theorem ulmres 26313
Description: A sequence of functions converges iff the tail of the sequence converges (for any finite cutoff). (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ulmres.z 𝑍 = (ℤ𝑀)
ulmres.w 𝑊 = (ℤ𝑁)
ulmres.m (𝜑𝑁𝑍)
ulmres.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
Assertion
Ref Expression
ulmres (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺))

Proof of Theorem ulmres
Dummy variables 𝑗 𝑘 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmscl 26304 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
2 ulmcl 26306 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
31, 2jca 511 . . 3 (𝐹(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ))
43a1i 11 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)))
5 ulmscl 26304 . . . 4 ((𝐹𝑊)(⇝𝑢𝑆)𝐺𝑆 ∈ V)
6 ulmcl 26306 . . . 4 ((𝐹𝑊)(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
75, 6jca 511 . . 3 ((𝐹𝑊)(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ))
87a1i 11 . 2 (𝜑 → ((𝐹𝑊)(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)))
9 ulmres.m . . . . . . . . . 10 (𝜑𝑁𝑍)
10 ulmres.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
119, 10eleqtrdi 2838 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
1211adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑁 ∈ (ℤ𝑀))
13 eluzel2 12758 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1412, 13syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑀 ∈ ℤ)
1510rexuz3 15274 . . . . . . 7 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
1614, 15syl 17 . . . . . 6 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
17 eluzelz 12763 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1812, 17syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑁 ∈ ℤ)
19 ulmres.w . . . . . . . 8 𝑊 = (ℤ𝑁)
2019rexuz3 15274 . . . . . . 7 (𝑁 ∈ ℤ → (∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
2118, 20syl 17 . . . . . 6 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
2216, 21bitr4d 282 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
2322ralbidv 3152 . . . 4 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∀𝑟 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
24 ulmres.f . . . . . 6 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
2524adantr 480 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
26 eqidd 2730 . . . . 5 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
27 eqidd 2730 . . . . 5 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
28 simprr 772 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝐺:𝑆⟶ℂ)
29 simprl 770 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑆 ∈ V)
3010, 14, 25, 26, 27, 28, 29ulm2 26310 . . . 4 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
31 uzss 12776 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
3212, 31syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (ℤ𝑁) ⊆ (ℤ𝑀))
3332, 19, 103sstr4g 3991 . . . . . 6 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑊𝑍)
3425, 33fssresd 6695 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (𝐹𝑊):𝑊⟶(ℂ ↑m 𝑆))
35 fvres 6845 . . . . . . 7 (𝑘𝑊 → ((𝐹𝑊)‘𝑘) = (𝐹𝑘))
3635ad2antrl 728 . . . . . 6 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ (𝑘𝑊𝑧𝑆)) → ((𝐹𝑊)‘𝑘) = (𝐹𝑘))
3736fveq1d 6828 . . . . 5 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ (𝑘𝑊𝑧𝑆)) → (((𝐹𝑊)‘𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
3819, 18, 34, 37, 27, 28, 29ulm2 26310 . . . 4 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → ((𝐹𝑊)(⇝𝑢𝑆)𝐺 ↔ ∀𝑟 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
3923, 30, 383bitr4d 311 . . 3 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺))
4039ex 412 . 2 (𝜑 → ((𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ) → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺)))
414, 8, 40pm5.21ndd 379 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  wss 3905   class class class wbr 5095  cres 5625  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  cc 11026   < clt 11168  cmin 11365  cz 12489  cuz 12753  +crp 12911  abscabs 15159  𝑢culm 26301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-neg 11368  df-z 12490  df-uz 12754  df-ulm 26302
This theorem is referenced by:  pserdvlem2  26354
  Copyright terms: Public domain W3C validator