MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmres Structured version   Visualization version   GIF version

Theorem ulmres 26449
Description: A sequence of functions converges iff the tail of the sequence converges (for any finite cutoff). (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ulmres.z 𝑍 = (ℤ𝑀)
ulmres.w 𝑊 = (ℤ𝑁)
ulmres.m (𝜑𝑁𝑍)
ulmres.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
Assertion
Ref Expression
ulmres (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺))

Proof of Theorem ulmres
Dummy variables 𝑗 𝑘 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmscl 26440 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
2 ulmcl 26442 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
31, 2jca 511 . . 3 (𝐹(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ))
43a1i 11 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)))
5 ulmscl 26440 . . . 4 ((𝐹𝑊)(⇝𝑢𝑆)𝐺𝑆 ∈ V)
6 ulmcl 26442 . . . 4 ((𝐹𝑊)(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
75, 6jca 511 . . 3 ((𝐹𝑊)(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ))
87a1i 11 . 2 (𝜑 → ((𝐹𝑊)(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)))
9 ulmres.m . . . . . . . . . 10 (𝜑𝑁𝑍)
10 ulmres.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
119, 10eleqtrdi 2854 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
1211adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑁 ∈ (ℤ𝑀))
13 eluzel2 12908 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1412, 13syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑀 ∈ ℤ)
1510rexuz3 15397 . . . . . . 7 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
1614, 15syl 17 . . . . . 6 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
17 eluzelz 12913 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1812, 17syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑁 ∈ ℤ)
19 ulmres.w . . . . . . . 8 𝑊 = (ℤ𝑁)
2019rexuz3 15397 . . . . . . 7 (𝑁 ∈ ℤ → (∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
2118, 20syl 17 . . . . . 6 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
2216, 21bitr4d 282 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
2322ralbidv 3184 . . . 4 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∀𝑟 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
24 ulmres.f . . . . . 6 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
2524adantr 480 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
26 eqidd 2741 . . . . 5 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
27 eqidd 2741 . . . . 5 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
28 simprr 772 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝐺:𝑆⟶ℂ)
29 simprl 770 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑆 ∈ V)
3010, 14, 25, 26, 27, 28, 29ulm2 26446 . . . 4 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
31 uzss 12926 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
3212, 31syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (ℤ𝑁) ⊆ (ℤ𝑀))
3332, 19, 103sstr4g 4054 . . . . . 6 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑊𝑍)
3425, 33fssresd 6788 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (𝐹𝑊):𝑊⟶(ℂ ↑m 𝑆))
35 fvres 6939 . . . . . . 7 (𝑘𝑊 → ((𝐹𝑊)‘𝑘) = (𝐹𝑘))
3635ad2antrl 727 . . . . . 6 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ (𝑘𝑊𝑧𝑆)) → ((𝐹𝑊)‘𝑘) = (𝐹𝑘))
3736fveq1d 6922 . . . . 5 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ (𝑘𝑊𝑧𝑆)) → (((𝐹𝑊)‘𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
3819, 18, 34, 37, 27, 28, 29ulm2 26446 . . . 4 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → ((𝐹𝑊)(⇝𝑢𝑆)𝐺 ↔ ∀𝑟 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
3923, 30, 383bitr4d 311 . . 3 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺))
4039ex 412 . 2 (𝜑 → ((𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ) → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺)))
414, 8, 40pm5.21ndd 379 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182   < clt 11324  cmin 11520  cz 12639  cuz 12903  +crp 13057  abscabs 15283  𝑢culm 26437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-neg 11523  df-z 12640  df-uz 12904  df-ulm 26438
This theorem is referenced by:  pserdvlem2  26490
  Copyright terms: Public domain W3C validator