MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ushgrf Structured version   Visualization version   GIF version

Theorem ushgrf 29062
Description: The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020.)
Hypotheses
Ref Expression
uhgrf.v 𝑉 = (Vtx‘𝐺)
uhgrf.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
ushgrf (𝐺 ∈ USHGraph → 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅}))

Proof of Theorem ushgrf
StepHypRef Expression
1 uhgrf.v . . 3 𝑉 = (Vtx‘𝐺)
2 uhgrf.e . . 3 𝐸 = (iEdg‘𝐺)
31, 2isushgr 29060 . 2 (𝐺 ∈ USHGraph → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))
43ibi 267 1 (𝐺 ∈ USHGraph → 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cdif 3895  c0 4282  𝒫 cpw 4551  {csn 4577  dom cdm 5621  1-1wf1 6486  cfv 6489  Vtxcvtx 28995  iEdgciedg 28996  USHGraphcushgr 29056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fv 6497  df-ushgr 29058
This theorem is referenced by:  ushgruhgr  29068  uspgrupgrushgr  29178  ushgredgedg  29228  ushgredgedgloop  29230  gricushgr  48079  ushggricedg  48089
  Copyright terms: Public domain W3C validator