![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ushgrf | Structured version Visualization version GIF version |
Description: The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020.) |
Ref | Expression |
---|---|
uhgrf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrf.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
ushgrf | ⊢ (𝐺 ∈ USHGraph → 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrf.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | uhgrf.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | isushgr 26359 | . 2 ⊢ (𝐺 ∈ USHGraph → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅}))) |
4 | 3 | ibi 259 | 1 ⊢ (𝐺 ∈ USHGraph → 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 ∖ cdif 3795 ∅c0 4144 𝒫 cpw 4378 {csn 4397 dom cdm 5342 –1-1→wf1 6120 ‘cfv 6123 Vtxcvtx 26294 iEdgciedg 26295 USHGraphcushgr 26355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-nul 5013 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fv 6131 df-ushgr 26357 |
This theorem is referenced by: ushgruhgr 26367 uspgrupgrushgr 26476 ushgredgedg 26525 ushgredgedgloop 26527 ushgredgedgloopOLD 26528 isomushgr 42544 ushrisomgr 42559 |
Copyright terms: Public domain | W3C validator |