| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ushgrf | Structured version Visualization version GIF version | ||
| Description: The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020.) |
| Ref | Expression |
|---|---|
| uhgrf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrf.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| ushgrf | ⊢ (𝐺 ∈ USHGraph → 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrf.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | uhgrf.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | isushgr 29034 | . 2 ⊢ (𝐺 ∈ USHGraph → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅}))) |
| 4 | 3 | ibi 267 | 1 ⊢ (𝐺 ∈ USHGraph → 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ∅c0 4278 𝒫 cpw 4545 {csn 4571 dom cdm 5611 –1-1→wf1 6473 ‘cfv 6476 Vtxcvtx 28969 iEdgciedg 28970 USHGraphcushgr 29030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fv 6484 df-ushgr 29032 |
| This theorem is referenced by: ushgruhgr 29042 uspgrupgrushgr 29152 ushgredgedg 29202 ushgredgedgloop 29204 gricushgr 47948 ushggricedg 47958 |
| Copyright terms: Public domain | W3C validator |