MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ushgrf Structured version   Visualization version   GIF version

Theorem ushgrf 26361
Description: The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020.)
Hypotheses
Ref Expression
uhgrf.v 𝑉 = (Vtx‘𝐺)
uhgrf.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
ushgrf (𝐺 ∈ USHGraph → 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅}))

Proof of Theorem ushgrf
StepHypRef Expression
1 uhgrf.v . . 3 𝑉 = (Vtx‘𝐺)
2 uhgrf.e . . 3 𝐸 = (iEdg‘𝐺)
31, 2isushgr 26359 . 2 (𝐺 ∈ USHGraph → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))
43ibi 259 1 (𝐺 ∈ USHGraph → 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  cdif 3795  c0 4144  𝒫 cpw 4378  {csn 4397  dom cdm 5342  1-1wf1 6120  cfv 6123  Vtxcvtx 26294  iEdgciedg 26295  USHGraphcushgr 26355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-nul 5013
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fv 6131  df-ushgr 26357
This theorem is referenced by:  ushgruhgr  26367  uspgrupgrushgr  26476  ushgredgedg  26525  ushgredgedgloop  26527  ushgredgedgloopOLD  26528  isomushgr  42544  ushrisomgr  42559
  Copyright terms: Public domain W3C validator