MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ushgrf Structured version   Visualization version   GIF version

Theorem ushgrf 29036
Description: The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020.)
Hypotheses
Ref Expression
uhgrf.v 𝑉 = (Vtx‘𝐺)
uhgrf.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
ushgrf (𝐺 ∈ USHGraph → 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅}))

Proof of Theorem ushgrf
StepHypRef Expression
1 uhgrf.v . . 3 𝑉 = (Vtx‘𝐺)
2 uhgrf.e . . 3 𝐸 = (iEdg‘𝐺)
31, 2isushgr 29034 . 2 (𝐺 ∈ USHGraph → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))
43ibi 267 1 (𝐺 ∈ USHGraph → 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cdif 3894  c0 4278  𝒫 cpw 4545  {csn 4571  dom cdm 5611  1-1wf1 6473  cfv 6476  Vtxcvtx 28969  iEdgciedg 28970  USHGraphcushgr 29030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fv 6484  df-ushgr 29032
This theorem is referenced by:  ushgruhgr  29042  uspgrupgrushgr  29152  ushgredgedg  29202  ushgredgedgloop  29204  gricushgr  47948  ushggricedg  47958
  Copyright terms: Public domain W3C validator