|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ushgrf | Structured version Visualization version GIF version | ||
| Description: The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020.) | 
| Ref | Expression | 
|---|---|
| uhgrf.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| uhgrf.e | ⊢ 𝐸 = (iEdg‘𝐺) | 
| Ref | Expression | 
|---|---|
| ushgrf | ⊢ (𝐺 ∈ USHGraph → 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅})) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uhgrf.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | uhgrf.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | isushgr 29079 | . 2 ⊢ (𝐺 ∈ USHGraph → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅}))) | 
| 4 | 3 | ibi 267 | 1 ⊢ (𝐺 ∈ USHGraph → 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅})) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∖ cdif 3947 ∅c0 4332 𝒫 cpw 4599 {csn 4625 dom cdm 5684 –1-1→wf1 6557 ‘cfv 6560 Vtxcvtx 29014 iEdgciedg 29015 USHGraphcushgr 29075 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fv 6568 df-ushgr 29077 | 
| This theorem is referenced by: ushgruhgr 29087 uspgrupgrushgr 29197 ushgredgedg 29247 ushgredgedgloop 29249 gricushgr 47891 ushggricedg 47901 | 
| Copyright terms: Public domain | W3C validator |