| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ushgruhgr | Structured version Visualization version GIF version | ||
| Description: An undirected simple hypergraph is an undirected hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
| Ref | Expression |
|---|---|
| ushgruhgr | ⊢ (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2736 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 1, 2 | ushgrf 29047 | . . 3 ⊢ (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 4 | f1f 6779 | . . 3 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 6 | 1, 2 | isuhgr 29044 | . 2 ⊢ (𝐺 ∈ USHGraph → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
| 7 | 5, 6 | mpbird 257 | 1 ⊢ (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∖ cdif 3928 ∅c0 4313 𝒫 cpw 4580 {csn 4606 dom cdm 5659 ⟶wf 6532 –1-1→wf1 6533 ‘cfv 6536 Vtxcvtx 28980 iEdgciedg 28981 UHGraphcuhgr 29040 USHGraphcushgr 29041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fv 6544 df-uhgr 29042 df-ushgr 29043 |
| This theorem is referenced by: ushgrun 29060 ushgrunop 29061 ushgredgedg 29213 ushgredgedgloop 29215 ushggricedg 47907 |
| Copyright terms: Public domain | W3C validator |