MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ushgruhgr Structured version   Visualization version   GIF version

Theorem ushgruhgr 29047
Description: An undirected simple hypergraph is an undirected hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.)
Assertion
Ref Expression
ushgruhgr (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)

Proof of Theorem ushgruhgr
StepHypRef Expression
1 eqid 2731 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2731 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2ushgrf 29041 . . 3 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))
4 f1f 6719 . . 3 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
53, 4syl 17 . 2 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
61, 2isuhgr 29038 . 2 (𝐺 ∈ USHGraph → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
75, 6mpbird 257 1 (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cdif 3894  c0 4280  𝒫 cpw 4547  {csn 4573  dom cdm 5614  wf 6477  1-1wf1 6478  cfv 6481  Vtxcvtx 28974  iEdgciedg 28975  UHGraphcuhgr 29034  USHGraphcushgr 29035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fv 6489  df-uhgr 29036  df-ushgr 29037
This theorem is referenced by:  ushgrun  29054  ushgrunop  29055  ushgredgedg  29207  ushgredgedgloop  29209  ushggricedg  48037
  Copyright terms: Public domain W3C validator