MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ushgruhgr Structured version   Visualization version   GIF version

Theorem ushgruhgr 29104
Description: An undirected simple hypergraph is an undirected hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.)
Assertion
Ref Expression
ushgruhgr (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)

Proof of Theorem ushgruhgr
StepHypRef Expression
1 eqid 2740 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2740 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2ushgrf 29098 . . 3 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))
4 f1f 6817 . . 3 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
53, 4syl 17 . 2 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
61, 2isuhgr 29095 . 2 (𝐺 ∈ USHGraph → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
75, 6mpbird 257 1 (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cdif 3973  c0 4352  𝒫 cpw 4622  {csn 4648  dom cdm 5700  wf 6569  1-1wf1 6570  cfv 6573  Vtxcvtx 29031  iEdgciedg 29032  UHGraphcuhgr 29091  USHGraphcushgr 29092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fv 6581  df-uhgr 29093  df-ushgr 29094
This theorem is referenced by:  ushgrun  29111  ushgrunop  29112  ushgredgedg  29264  ushgredgedgloop  29266  ushggricedg  47780
  Copyright terms: Public domain W3C validator