MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ushgruhgr Structured version   Visualization version   GIF version

Theorem ushgruhgr 27439
Description: An undirected simple hypergraph is an undirected hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.)
Assertion
Ref Expression
ushgruhgr (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)

Proof of Theorem ushgruhgr
StepHypRef Expression
1 eqid 2738 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2738 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2ushgrf 27433 . . 3 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))
4 f1f 6670 . . 3 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
53, 4syl 17 . 2 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
61, 2isuhgr 27430 . 2 (𝐺 ∈ USHGraph → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
75, 6mpbird 256 1 (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cdif 3884  c0 4256  𝒫 cpw 4533  {csn 4561  dom cdm 5589  wf 6429  1-1wf1 6430  cfv 6433  Vtxcvtx 27366  iEdgciedg 27367  UHGraphcuhgr 27426  USHGraphcushgr 27427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fv 6441  df-uhgr 27428  df-ushgr 27429
This theorem is referenced by:  ushgrun  27446  ushgrunop  27447  ushgredgedg  27596  ushgredgedgloop  27598  ushrisomgr  45293
  Copyright terms: Public domain W3C validator