Step | Hyp | Ref
| Expression |
1 | | ushrisomgr.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
2 | 1 | fvexi 6788 |
. . . . 5
⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 |
. . . 4
⊢ (𝐺 ∈ USHGraph → 𝑉 ∈ V) |
4 | 3 | resiexd 7092 |
. . 3
⊢ (𝐺 ∈ USHGraph → ( I
↾ 𝑉) ∈
V) |
5 | | f1oi 6754 |
. . . . . 6
⊢ ( I
↾ 𝑉):𝑉–1-1-onto→𝑉 |
6 | 5 | a1i 11 |
. . . . 5
⊢ (𝐺 ∈ USHGraph → ( I
↾ 𝑉):𝑉–1-1-onto→𝑉) |
7 | | ushrisomgr.s |
. . . . . . . 8
⊢ 𝐻 = 〈𝑉, ( I ↾ 𝐸)〉 |
8 | 7 | fveq2i 6777 |
. . . . . . 7
⊢
(Vtx‘𝐻) =
(Vtx‘〈𝑉, ( I
↾ 𝐸)〉) |
9 | | ushrisomgr.e |
. . . . . . . . . . 11
⊢ 𝐸 = (Edg‘𝐺) |
10 | 9 | fvexi 6788 |
. . . . . . . . . 10
⊢ 𝐸 ∈ V |
11 | | id 22 |
. . . . . . . . . . 11
⊢ (𝐸 ∈ V → 𝐸 ∈ V) |
12 | 11 | resiexd 7092 |
. . . . . . . . . 10
⊢ (𝐸 ∈ V → ( I ↾
𝐸) ∈
V) |
13 | 10, 12 | ax-mp 5 |
. . . . . . . . 9
⊢ ( I
↾ 𝐸) ∈
V |
14 | 2, 13 | pm3.2i 471 |
. . . . . . . 8
⊢ (𝑉 ∈ V ∧ ( I ↾
𝐸) ∈
V) |
15 | | opvtxfv 27374 |
. . . . . . . 8
⊢ ((𝑉 ∈ V ∧ ( I ↾
𝐸) ∈ V) →
(Vtx‘〈𝑉, ( I
↾ 𝐸)〉) = 𝑉) |
16 | 14, 15 | mp1i 13 |
. . . . . . 7
⊢ (𝐺 ∈ USHGraph →
(Vtx‘〈𝑉, ( I
↾ 𝐸)〉) = 𝑉) |
17 | 8, 16 | eqtrid 2790 |
. . . . . 6
⊢ (𝐺 ∈ USHGraph →
(Vtx‘𝐻) = 𝑉) |
18 | 17 | f1oeq3d 6713 |
. . . . 5
⊢ (𝐺 ∈ USHGraph → (( I
↾ 𝑉):𝑉–1-1-onto→(Vtx‘𝐻) ↔ ( I ↾ 𝑉):𝑉–1-1-onto→𝑉)) |
19 | 6, 18 | mpbird 256 |
. . . 4
⊢ (𝐺 ∈ USHGraph → ( I
↾ 𝑉):𝑉–1-1-onto→(Vtx‘𝐻)) |
20 | | fvexd 6789 |
. . . . 5
⊢ (𝐺 ∈ USHGraph →
(iEdg‘𝐺) ∈
V) |
21 | | eqid 2738 |
. . . . . . . . 9
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
22 | 1, 21 | ushgrf 27433 |
. . . . . . . 8
⊢ (𝐺 ∈ USHGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅})) |
23 | | f1f1orn 6727 |
. . . . . . . 8
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran
(iEdg‘𝐺)) |
24 | 22, 23 | syl 17 |
. . . . . . 7
⊢ (𝐺 ∈ USHGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺)) |
25 | 7 | fveq2i 6777 |
. . . . . . . . . . 11
⊢
(iEdg‘𝐻) =
(iEdg‘〈𝑉, ( I
↾ 𝐸)〉) |
26 | 10 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USHGraph → 𝐸 ∈ V) |
27 | 26 | resiexd 7092 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USHGraph → ( I
↾ 𝐸) ∈
V) |
28 | | opiedgfv 27377 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∈ V ∧ ( I ↾
𝐸) ∈ V) →
(iEdg‘〈𝑉, ( I
↾ 𝐸)〉) = ( I
↾ 𝐸)) |
29 | 2, 27, 28 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USHGraph →
(iEdg‘〈𝑉, ( I
↾ 𝐸)〉) = ( I
↾ 𝐸)) |
30 | 25, 29 | eqtrid 2790 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USHGraph →
(iEdg‘𝐻) = ( I
↾ 𝐸)) |
31 | 30 | dmeqd 5814 |
. . . . . . . . 9
⊢ (𝐺 ∈ USHGraph → dom
(iEdg‘𝐻) = dom ( I
↾ 𝐸)) |
32 | | dmresi 5961 |
. . . . . . . . . 10
⊢ dom ( I
↾ 𝐸) = 𝐸 |
33 | 9 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USHGraph → 𝐸 = (Edg‘𝐺)) |
34 | | edgval 27419 |
. . . . . . . . . . 11
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
35 | 33, 34 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USHGraph → 𝐸 = ran (iEdg‘𝐺)) |
36 | 32, 35 | eqtrid 2790 |
. . . . . . . . 9
⊢ (𝐺 ∈ USHGraph → dom ( I
↾ 𝐸) = ran
(iEdg‘𝐺)) |
37 | 31, 36 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝐺 ∈ USHGraph → dom
(iEdg‘𝐻) = ran
(iEdg‘𝐺)) |
38 | 37 | f1oeq3d 6713 |
. . . . . . 7
⊢ (𝐺 ∈ USHGraph →
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran
(iEdg‘𝐺))) |
39 | 24, 38 | mpbird 256 |
. . . . . 6
⊢ (𝐺 ∈ USHGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) |
40 | | ushgruhgr 27439 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USHGraph → 𝐺 ∈
UHGraph) |
41 | 1, 21 | uhgrss 27434 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ 𝑉) |
42 | 40, 41 | sylan 580 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ 𝑉) |
43 | | resiima 5984 |
. . . . . . . . 9
⊢
(((iEdg‘𝐺)‘𝑖) ⊆ 𝑉 → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖)) |
44 | 42, 43 | syl 17 |
. . . . . . . 8
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖)) |
45 | | f1f 6670 |
. . . . . . . . . . . . 13
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖
{∅})) |
46 | 22, 45 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USHGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅})) |
47 | 46 | ffund 6604 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USHGraph → Fun
(iEdg‘𝐺)) |
48 | | fvelrn 6954 |
. . . . . . . . . . 11
⊢ ((Fun
(iEdg‘𝐺) ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ ran (iEdg‘𝐺)) |
49 | 47, 48 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ ran (iEdg‘𝐺)) |
50 | 9, 34 | eqtri 2766 |
. . . . . . . . . 10
⊢ 𝐸 = ran (iEdg‘𝐺) |
51 | 49, 50 | eleqtrrdi 2850 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ 𝐸) |
52 | | fvresi 7045 |
. . . . . . . . 9
⊢
(((iEdg‘𝐺)‘𝑖) ∈ 𝐸 → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖)) |
53 | 51, 52 | syl 17 |
. . . . . . . 8
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖)) |
54 | 10 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → 𝐸 ∈ V) |
55 | 54 | resiexd 7092 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ( I ↾ 𝐸) ∈ V) |
56 | 2, 55, 28 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) →
(iEdg‘〈𝑉, ( I
↾ 𝐸)〉) = ( I
↾ 𝐸)) |
57 | 25, 56 | eqtr2id 2791 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ( I ↾ 𝐸) = (iEdg‘𝐻)) |
58 | 57 | fveq1d 6776 |
. . . . . . . 8
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))) |
59 | 44, 53, 58 | 3eqtr2d 2784 |
. . . . . . 7
⊢ ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))) |
60 | 59 | ralrimiva 3103 |
. . . . . 6
⊢ (𝐺 ∈ USHGraph →
∀𝑖 ∈ dom
(iEdg‘𝐺)(( I ↾
𝑉) “
((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))) |
61 | 39, 60 | jca 512 |
. . . . 5
⊢ (𝐺 ∈ USHGraph →
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))) |
62 | | f1oeq1 6704 |
. . . . . 6
⊢ (𝑔 = (iEdg‘𝐺) → (𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ↔
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))) |
63 | | fveq1 6773 |
. . . . . . . . 9
⊢ (𝑔 = (iEdg‘𝐺) → (𝑔‘𝑖) = ((iEdg‘𝐺)‘𝑖)) |
64 | 63 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑔 = (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑔‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))) |
65 | 64 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑔 = (iEdg‘𝐺) → ((( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)) ↔ (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))) |
66 | 65 | ralbidv 3112 |
. . . . . 6
⊢ (𝑔 = (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))) |
67 | 62, 66 | anbi12d 631 |
. . . . 5
⊢ (𝑔 = (iEdg‘𝐺) → ((𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(( I ↾
𝑉) “
((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖))) ↔ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(( I ↾
𝑉) “
((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))))) |
68 | 20, 61, 67 | spcedv 3537 |
. . . 4
⊢ (𝐺 ∈ USHGraph →
∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(( I ↾
𝑉) “
((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)))) |
69 | 19, 68 | jca 512 |
. . 3
⊢ (𝐺 ∈ USHGraph → (( I
↾ 𝑉):𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(( I ↾
𝑉) “
((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖))))) |
70 | | f1oeq1 6704 |
. . . 4
⊢ (𝑓 = ( I ↾ 𝑉) → (𝑓:𝑉–1-1-onto→(Vtx‘𝐻) ↔ ( I ↾ 𝑉):𝑉–1-1-onto→(Vtx‘𝐻))) |
71 | | imaeq1 5964 |
. . . . . . . 8
⊢ (𝑓 = ( I ↾ 𝑉) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖))) |
72 | 71 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑓 = ( I ↾ 𝑉) → ((𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)) ↔ (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)))) |
73 | 72 | ralbidv 3112 |
. . . . . 6
⊢ (𝑓 = ( I ↾ 𝑉) → (∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)))) |
74 | 73 | anbi2d 629 |
. . . . 5
⊢ (𝑓 = ( I ↾ 𝑉) → ((𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖))) ↔ (𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(( I ↾
𝑉) “
((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖))))) |
75 | 74 | exbidv 1924 |
. . . 4
⊢ (𝑓 = ( I ↾ 𝑉) → (∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖))) ↔ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(( I ↾
𝑉) “
((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖))))) |
76 | 70, 75 | anbi12d 631 |
. . 3
⊢ (𝑓 = ( I ↾ 𝑉) → ((𝑓:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)))) ↔ (( I ↾ 𝑉):𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(( I ↾
𝑉) “
((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)))))) |
77 | 4, 69, 76 | spcedv 3537 |
. 2
⊢ (𝐺 ∈ USHGraph →
∃𝑓(𝑓:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖))))) |
78 | | opex 5379 |
. . . 4
⊢
〈𝑉, ( I ↾
𝐸)〉 ∈
V |
79 | 7, 78 | eqeltri 2835 |
. . 3
⊢ 𝐻 ∈ V |
80 | | eqid 2738 |
. . . 4
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
81 | | eqid 2738 |
. . . 4
⊢
(iEdg‘𝐻) =
(iEdg‘𝐻) |
82 | 1, 80, 21, 81 | isomgr 45275 |
. . 3
⊢ ((𝐺 ∈ USHGraph ∧ 𝐻 ∈ V) → (𝐺 IsomGr 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)))))) |
83 | 79, 82 | mpan2 688 |
. 2
⊢ (𝐺 ∈ USHGraph → (𝐺 IsomGr 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑖)))))) |
84 | 77, 83 | mpbird 256 |
1
⊢ (𝐺 ∈ USHGraph → 𝐺 IsomGr 𝐻) |