Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ushrisomgr Structured version   Visualization version   GIF version

Theorem ushrisomgr 45558
Description: A simple hypergraph (with arbitrarily indexed edges) is isomorphic to a graph with the same vertices and the same edges, indexed by the edges themselves. (Contributed by AV, 11-Nov-2022.)
Hypotheses
Ref Expression
ushrisomgr.v 𝑉 = (Vtx‘𝐺)
ushrisomgr.e 𝐸 = (Edg‘𝐺)
ushrisomgr.s 𝐻 = ⟨𝑉, ( I ↾ 𝐸)⟩
Assertion
Ref Expression
ushrisomgr (𝐺 ∈ USHGraph → 𝐺 IsomGr 𝐻)

Proof of Theorem ushrisomgr
Dummy variables 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ushrisomgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21fvexi 6826 . . . . 5 𝑉 ∈ V
32a1i 11 . . . 4 (𝐺 ∈ USHGraph → 𝑉 ∈ V)
43resiexd 7132 . . 3 (𝐺 ∈ USHGraph → ( I ↾ 𝑉) ∈ V)
5 f1oi 6792 . . . . . 6 ( I ↾ 𝑉):𝑉1-1-onto𝑉
65a1i 11 . . . . 5 (𝐺 ∈ USHGraph → ( I ↾ 𝑉):𝑉1-1-onto𝑉)
7 ushrisomgr.s . . . . . . . 8 𝐻 = ⟨𝑉, ( I ↾ 𝐸)⟩
87fveq2i 6815 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩)
9 ushrisomgr.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
109fvexi 6826 . . . . . . . . . 10 𝐸 ∈ V
11 id 22 . . . . . . . . . . 11 (𝐸 ∈ V → 𝐸 ∈ V)
1211resiexd 7132 . . . . . . . . . 10 (𝐸 ∈ V → ( I ↾ 𝐸) ∈ V)
1310, 12ax-mp 5 . . . . . . . . 9 ( I ↾ 𝐸) ∈ V
142, 13pm3.2i 471 . . . . . . . 8 (𝑉 ∈ V ∧ ( I ↾ 𝐸) ∈ V)
15 opvtxfv 27510 . . . . . . . 8 ((𝑉 ∈ V ∧ ( I ↾ 𝐸) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
1614, 15mp1i 13 . . . . . . 7 (𝐺 ∈ USHGraph → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
178, 16eqtrid 2789 . . . . . 6 (𝐺 ∈ USHGraph → (Vtx‘𝐻) = 𝑉)
1817f1oeq3d 6751 . . . . 5 (𝐺 ∈ USHGraph → (( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻) ↔ ( I ↾ 𝑉):𝑉1-1-onto𝑉))
196, 18mpbird 256 . . . 4 (𝐺 ∈ USHGraph → ( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻))
20 fvexd 6827 . . . . 5 (𝐺 ∈ USHGraph → (iEdg‘𝐺) ∈ V)
21 eqid 2737 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
221, 21ushgrf 27569 . . . . . . . 8 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅}))
23 f1f1orn 6765 . . . . . . . 8 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺))
2422, 23syl 17 . . . . . . 7 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺))
257fveq2i 6815 . . . . . . . . . . 11 (iEdg‘𝐻) = (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)
2610a1i 11 . . . . . . . . . . . . 13 (𝐺 ∈ USHGraph → 𝐸 ∈ V)
2726resiexd 7132 . . . . . . . . . . . 12 (𝐺 ∈ USHGraph → ( I ↾ 𝐸) ∈ V)
28 opiedgfv 27513 . . . . . . . . . . . 12 ((𝑉 ∈ V ∧ ( I ↾ 𝐸) ∈ V) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
292, 27, 28sylancr 587 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
3025, 29eqtrid 2789 . . . . . . . . . 10 (𝐺 ∈ USHGraph → (iEdg‘𝐻) = ( I ↾ 𝐸))
3130dmeqd 5835 . . . . . . . . 9 (𝐺 ∈ USHGraph → dom (iEdg‘𝐻) = dom ( I ↾ 𝐸))
32 dmresi 5979 . . . . . . . . . 10 dom ( I ↾ 𝐸) = 𝐸
339a1i 11 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → 𝐸 = (Edg‘𝐺))
34 edgval 27555 . . . . . . . . . . 11 (Edg‘𝐺) = ran (iEdg‘𝐺)
3533, 34eqtrdi 2793 . . . . . . . . . 10 (𝐺 ∈ USHGraph → 𝐸 = ran (iEdg‘𝐺))
3632, 35eqtrid 2789 . . . . . . . . 9 (𝐺 ∈ USHGraph → dom ( I ↾ 𝐸) = ran (iEdg‘𝐺))
3731, 36eqtrd 2777 . . . . . . . 8 (𝐺 ∈ USHGraph → dom (iEdg‘𝐻) = ran (iEdg‘𝐺))
3837f1oeq3d 6751 . . . . . . 7 (𝐺 ∈ USHGraph → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺)))
3924, 38mpbird 256 . . . . . 6 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))
40 ushgruhgr 27575 . . . . . . . . . 10 (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)
411, 21uhgrss 27570 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ 𝑉)
4240, 41sylan 580 . . . . . . . . 9 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ 𝑉)
43 resiima 6002 . . . . . . . . 9 (((iEdg‘𝐺)‘𝑖) ⊆ 𝑉 → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
4442, 43syl 17 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
45 f1f 6708 . . . . . . . . . . . . 13 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
4622, 45syl 17 . . . . . . . . . . . 12 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
4746ffund 6642 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → Fun (iEdg‘𝐺))
48 fvelrn 6994 . . . . . . . . . . 11 ((Fun (iEdg‘𝐺) ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ ran (iEdg‘𝐺))
4947, 48sylan 580 . . . . . . . . . 10 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ ran (iEdg‘𝐺))
509, 34eqtri 2765 . . . . . . . . . 10 𝐸 = ran (iEdg‘𝐺)
5149, 50eleqtrrdi 2849 . . . . . . . . 9 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ 𝐸)
52 fvresi 7085 . . . . . . . . 9 (((iEdg‘𝐺)‘𝑖) ∈ 𝐸 → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
5351, 52syl 17 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
5410a1i 11 . . . . . . . . . . . 12 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → 𝐸 ∈ V)
5554resiexd 7132 . . . . . . . . . . 11 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ( I ↾ 𝐸) ∈ V)
562, 55, 28sylancr 587 . . . . . . . . . 10 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
5725, 56eqtr2id 2790 . . . . . . . . 9 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ( I ↾ 𝐸) = (iEdg‘𝐻))
5857fveq1d 6814 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))
5944, 53, 583eqtr2d 2783 . . . . . . 7 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))
6059ralrimiva 3140 . . . . . 6 (𝐺 ∈ USHGraph → ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))
6139, 60jca 512 . . . . 5 (𝐺 ∈ USHGraph → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))))
62 f1oeq1 6742 . . . . . 6 (𝑔 = (iEdg‘𝐺) → (𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)))
63 fveq1 6811 . . . . . . . . 9 (𝑔 = (iEdg‘𝐺) → (𝑔𝑖) = ((iEdg‘𝐺)‘𝑖))
6463fveq2d 6816 . . . . . . . 8 (𝑔 = (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑔𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))
6564eqeq2d 2748 . . . . . . 7 (𝑔 = (iEdg‘𝐺) → ((( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)) ↔ (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))))
6665ralbidv 3171 . . . . . 6 (𝑔 = (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))))
6762, 66anbi12d 631 . . . . 5 (𝑔 = (iEdg‘𝐺) → ((𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))) ↔ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))))
6820, 61, 67spcedv 3546 . . . 4 (𝐺 ∈ USHGraph → ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))
6919, 68jca 512 . . 3 (𝐺 ∈ USHGraph → (( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))))
70 f1oeq1 6742 . . . 4 (𝑓 = ( I ↾ 𝑉) → (𝑓:𝑉1-1-onto→(Vtx‘𝐻) ↔ ( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻)))
71 imaeq1 5982 . . . . . . . 8 (𝑓 = ( I ↾ 𝑉) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)))
7271eqeq1d 2739 . . . . . . 7 (𝑓 = ( I ↾ 𝑉) → ((𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)) ↔ (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))
7372ralbidv 3171 . . . . . 6 (𝑓 = ( I ↾ 𝑉) → (∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))
7473anbi2d 629 . . . . 5 (𝑓 = ( I ↾ 𝑉) → ((𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))) ↔ (𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))))
7574exbidv 1923 . . . 4 (𝑓 = ( I ↾ 𝑉) → (∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))) ↔ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))))
7670, 75anbi12d 631 . . 3 (𝑓 = ( I ↾ 𝑉) → ((𝑓:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))) ↔ (( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))))
774, 69, 76spcedv 3546 . 2 (𝐺 ∈ USHGraph → ∃𝑓(𝑓:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))))
78 opex 5398 . . . 4 𝑉, ( I ↾ 𝐸)⟩ ∈ V
797, 78eqeltri 2834 . . 3 𝐻 ∈ V
80 eqid 2737 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
81 eqid 2737 . . . 4 (iEdg‘𝐻) = (iEdg‘𝐻)
821, 80, 21, 81isomgr 45540 . . 3 ((𝐺 ∈ USHGraph ∧ 𝐻 ∈ V) → (𝐺 IsomGr 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))))
8379, 82mpan2 688 . 2 (𝐺 ∈ USHGraph → (𝐺 IsomGr 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))))
8477, 83mpbird 256 1 (𝐺 ∈ USHGraph → 𝐺 IsomGr 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wex 1780  wcel 2105  wral 3062  Vcvv 3441  cdif 3894  wss 3897  c0 4267  𝒫 cpw 4545  {csn 4571  cop 4577   class class class wbr 5087   I cid 5506  dom cdm 5608  ran crn 5609  cres 5610  cima 5611  Fun wfun 6460  wf 6462  1-1wf1 6463  1-1-ontowf1o 6465  cfv 6466  Vtxcvtx 27502  iEdgciedg 27503  Edgcedg 27553  UHGraphcuhgr 27562  USHGraphcushgr 27563   IsomGr cisomgr 45536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pr 5367  ax-un 7630
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-1st 7878  df-2nd 7879  df-vtx 27504  df-iedg 27505  df-edg 27554  df-uhgr 27564  df-ushgr 27565  df-isomgr 45538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator