Step | Hyp | Ref
| Expression |
1 | | ushrisomgr.v |
. . . . . 6
β’ π = (VtxβπΊ) |
2 | 1 | fvexi 6902 |
. . . . 5
β’ π β V |
3 | 2 | a1i 11 |
. . . 4
β’ (πΊ β USHGraph β π β V) |
4 | 3 | resiexd 7214 |
. . 3
β’ (πΊ β USHGraph β ( I
βΎ π) β
V) |
5 | | f1oi 6868 |
. . . . . 6
β’ ( I
βΎ π):πβ1-1-ontoβπ |
6 | 5 | a1i 11 |
. . . . 5
β’ (πΊ β USHGraph β ( I
βΎ π):πβ1-1-ontoβπ) |
7 | | ushrisomgr.s |
. . . . . . . 8
β’ π» = β¨π, ( I βΎ πΈ)β© |
8 | 7 | fveq2i 6891 |
. . . . . . 7
β’
(Vtxβπ») =
(Vtxββ¨π, ( I
βΎ πΈ)β©) |
9 | | ushrisomgr.e |
. . . . . . . . . . 11
β’ πΈ = (EdgβπΊ) |
10 | 9 | fvexi 6902 |
. . . . . . . . . 10
β’ πΈ β V |
11 | | id 22 |
. . . . . . . . . . 11
β’ (πΈ β V β πΈ β V) |
12 | 11 | resiexd 7214 |
. . . . . . . . . 10
β’ (πΈ β V β ( I βΎ
πΈ) β
V) |
13 | 10, 12 | ax-mp 5 |
. . . . . . . . 9
β’ ( I
βΎ πΈ) β
V |
14 | 2, 13 | pm3.2i 471 |
. . . . . . . 8
β’ (π β V β§ ( I βΎ
πΈ) β
V) |
15 | | opvtxfv 28253 |
. . . . . . . 8
β’ ((π β V β§ ( I βΎ
πΈ) β V) β
(Vtxββ¨π, ( I
βΎ πΈ)β©) = π) |
16 | 14, 15 | mp1i 13 |
. . . . . . 7
β’ (πΊ β USHGraph β
(Vtxββ¨π, ( I
βΎ πΈ)β©) = π) |
17 | 8, 16 | eqtrid 2784 |
. . . . . 6
β’ (πΊ β USHGraph β
(Vtxβπ») = π) |
18 | 17 | f1oeq3d 6827 |
. . . . 5
β’ (πΊ β USHGraph β (( I
βΎ π):πβ1-1-ontoβ(Vtxβπ») β ( I βΎ π):πβ1-1-ontoβπ)) |
19 | 6, 18 | mpbird 256 |
. . . 4
β’ (πΊ β USHGraph β ( I
βΎ π):πβ1-1-ontoβ(Vtxβπ»)) |
20 | | fvexd 6903 |
. . . . 5
β’ (πΊ β USHGraph β
(iEdgβπΊ) β
V) |
21 | | eqid 2732 |
. . . . . . . . 9
β’
(iEdgβπΊ) =
(iEdgβπΊ) |
22 | 1, 21 | ushgrf 28312 |
. . . . . . . 8
β’ (πΊ β USHGraph β
(iEdgβπΊ):dom
(iEdgβπΊ)β1-1β(π« π β {β
})) |
23 | | f1f1orn 6841 |
. . . . . . . 8
β’
((iEdgβπΊ):dom
(iEdgβπΊ)β1-1β(π« π β {β
}) β (iEdgβπΊ):dom (iEdgβπΊ)β1-1-ontoβran
(iEdgβπΊ)) |
24 | 22, 23 | syl 17 |
. . . . . . 7
β’ (πΊ β USHGraph β
(iEdgβπΊ):dom
(iEdgβπΊ)β1-1-ontoβran (iEdgβπΊ)) |
25 | 7 | fveq2i 6891 |
. . . . . . . . . . 11
β’
(iEdgβπ») =
(iEdgββ¨π, ( I
βΎ πΈ)β©) |
26 | 10 | a1i 11 |
. . . . . . . . . . . . 13
β’ (πΊ β USHGraph β πΈ β V) |
27 | 26 | resiexd 7214 |
. . . . . . . . . . . 12
β’ (πΊ β USHGraph β ( I
βΎ πΈ) β
V) |
28 | | opiedgfv 28256 |
. . . . . . . . . . . 12
β’ ((π β V β§ ( I βΎ
πΈ) β V) β
(iEdgββ¨π, ( I
βΎ πΈ)β©) = ( I
βΎ πΈ)) |
29 | 2, 27, 28 | sylancr 587 |
. . . . . . . . . . 11
β’ (πΊ β USHGraph β
(iEdgββ¨π, ( I
βΎ πΈ)β©) = ( I
βΎ πΈ)) |
30 | 25, 29 | eqtrid 2784 |
. . . . . . . . . 10
β’ (πΊ β USHGraph β
(iEdgβπ») = ( I
βΎ πΈ)) |
31 | 30 | dmeqd 5903 |
. . . . . . . . 9
β’ (πΊ β USHGraph β dom
(iEdgβπ») = dom ( I
βΎ πΈ)) |
32 | | dmresi 6049 |
. . . . . . . . . 10
β’ dom ( I
βΎ πΈ) = πΈ |
33 | 9 | a1i 11 |
. . . . . . . . . . 11
β’ (πΊ β USHGraph β πΈ = (EdgβπΊ)) |
34 | | edgval 28298 |
. . . . . . . . . . 11
β’
(EdgβπΊ) = ran
(iEdgβπΊ) |
35 | 33, 34 | eqtrdi 2788 |
. . . . . . . . . 10
β’ (πΊ β USHGraph β πΈ = ran (iEdgβπΊ)) |
36 | 32, 35 | eqtrid 2784 |
. . . . . . . . 9
β’ (πΊ β USHGraph β dom ( I
βΎ πΈ) = ran
(iEdgβπΊ)) |
37 | 31, 36 | eqtrd 2772 |
. . . . . . . 8
β’ (πΊ β USHGraph β dom
(iEdgβπ») = ran
(iEdgβπΊ)) |
38 | 37 | f1oeq3d 6827 |
. . . . . . 7
β’ (πΊ β USHGraph β
((iEdgβπΊ):dom
(iEdgβπΊ)β1-1-ontoβdom (iEdgβπ») β (iEdgβπΊ):dom (iEdgβπΊ)β1-1-ontoβran
(iEdgβπΊ))) |
39 | 24, 38 | mpbird 256 |
. . . . . 6
β’ (πΊ β USHGraph β
(iEdgβπΊ):dom
(iEdgβπΊ)β1-1-ontoβdom (iEdgβπ»)) |
40 | | ushgruhgr 28318 |
. . . . . . . . . 10
β’ (πΊ β USHGraph β πΊ β
UHGraph) |
41 | 1, 21 | uhgrss 28313 |
. . . . . . . . . 10
β’ ((πΊ β UHGraph β§ π β dom (iEdgβπΊ)) β ((iEdgβπΊ)βπ) β π) |
42 | 40, 41 | sylan 580 |
. . . . . . . . 9
β’ ((πΊ β USHGraph β§ π β dom (iEdgβπΊ)) β ((iEdgβπΊ)βπ) β π) |
43 | | resiima 6072 |
. . . . . . . . 9
β’
(((iEdgβπΊ)βπ) β π β (( I βΎ π) β ((iEdgβπΊ)βπ)) = ((iEdgβπΊ)βπ)) |
44 | 42, 43 | syl 17 |
. . . . . . . 8
β’ ((πΊ β USHGraph β§ π β dom (iEdgβπΊ)) β (( I βΎ π) β ((iEdgβπΊ)βπ)) = ((iEdgβπΊ)βπ)) |
45 | | f1f 6784 |
. . . . . . . . . . . . 13
β’
((iEdgβπΊ):dom
(iEdgβπΊ)β1-1β(π« π β {β
}) β (iEdgβπΊ):dom (iEdgβπΊ)βΆ(π« π β
{β
})) |
46 | 22, 45 | syl 17 |
. . . . . . . . . . . 12
β’ (πΊ β USHGraph β
(iEdgβπΊ):dom
(iEdgβπΊ)βΆ(π« π β {β
})) |
47 | 46 | ffund 6718 |
. . . . . . . . . . 11
β’ (πΊ β USHGraph β Fun
(iEdgβπΊ)) |
48 | | fvelrn 7075 |
. . . . . . . . . . 11
β’ ((Fun
(iEdgβπΊ) β§ π β dom (iEdgβπΊ)) β ((iEdgβπΊ)βπ) β ran (iEdgβπΊ)) |
49 | 47, 48 | sylan 580 |
. . . . . . . . . 10
β’ ((πΊ β USHGraph β§ π β dom (iEdgβπΊ)) β ((iEdgβπΊ)βπ) β ran (iEdgβπΊ)) |
50 | 9, 34 | eqtri 2760 |
. . . . . . . . . 10
β’ πΈ = ran (iEdgβπΊ) |
51 | 49, 50 | eleqtrrdi 2844 |
. . . . . . . . 9
β’ ((πΊ β USHGraph β§ π β dom (iEdgβπΊ)) β ((iEdgβπΊ)βπ) β πΈ) |
52 | | fvresi 7167 |
. . . . . . . . 9
β’
(((iEdgβπΊ)βπ) β πΈ β (( I βΎ πΈ)β((iEdgβπΊ)βπ)) = ((iEdgβπΊ)βπ)) |
53 | 51, 52 | syl 17 |
. . . . . . . 8
β’ ((πΊ β USHGraph β§ π β dom (iEdgβπΊ)) β (( I βΎ πΈ)β((iEdgβπΊ)βπ)) = ((iEdgβπΊ)βπ)) |
54 | 10 | a1i 11 |
. . . . . . . . . . . 12
β’ ((πΊ β USHGraph β§ π β dom (iEdgβπΊ)) β πΈ β V) |
55 | 54 | resiexd 7214 |
. . . . . . . . . . 11
β’ ((πΊ β USHGraph β§ π β dom (iEdgβπΊ)) β ( I βΎ πΈ) β V) |
56 | 2, 55, 28 | sylancr 587 |
. . . . . . . . . 10
β’ ((πΊ β USHGraph β§ π β dom (iEdgβπΊ)) β
(iEdgββ¨π, ( I
βΎ πΈ)β©) = ( I
βΎ πΈ)) |
57 | 25, 56 | eqtr2id 2785 |
. . . . . . . . 9
β’ ((πΊ β USHGraph β§ π β dom (iEdgβπΊ)) β ( I βΎ πΈ) = (iEdgβπ»)) |
58 | 57 | fveq1d 6890 |
. . . . . . . 8
β’ ((πΊ β USHGraph β§ π β dom (iEdgβπΊ)) β (( I βΎ πΈ)β((iEdgβπΊ)βπ)) = ((iEdgβπ»)β((iEdgβπΊ)βπ))) |
59 | 44, 53, 58 | 3eqtr2d 2778 |
. . . . . . 7
β’ ((πΊ β USHGraph β§ π β dom (iEdgβπΊ)) β (( I βΎ π) β ((iEdgβπΊ)βπ)) = ((iEdgβπ»)β((iEdgβπΊ)βπ))) |
60 | 59 | ralrimiva 3146 |
. . . . . 6
β’ (πΊ β USHGraph β
βπ β dom
(iEdgβπΊ)(( I βΎ
π) β
((iEdgβπΊ)βπ)) = ((iEdgβπ»)β((iEdgβπΊ)βπ))) |
61 | 39, 60 | jca 512 |
. . . . 5
β’ (πΊ β USHGraph β
((iEdgβπΊ):dom
(iEdgβπΊ)β1-1-ontoβdom (iEdgβπ») β§ βπ β dom (iEdgβπΊ)(( I βΎ π) β ((iEdgβπΊ)βπ)) = ((iEdgβπ»)β((iEdgβπΊ)βπ)))) |
62 | | f1oeq1 6818 |
. . . . . 6
β’ (π = (iEdgβπΊ) β (π:dom (iEdgβπΊ)β1-1-ontoβdom
(iEdgβπ») β
(iEdgβπΊ):dom
(iEdgβπΊ)β1-1-ontoβdom (iEdgβπ»))) |
63 | | fveq1 6887 |
. . . . . . . . 9
β’ (π = (iEdgβπΊ) β (πβπ) = ((iEdgβπΊ)βπ)) |
64 | 63 | fveq2d 6892 |
. . . . . . . 8
β’ (π = (iEdgβπΊ) β ((iEdgβπ»)β(πβπ)) = ((iEdgβπ»)β((iEdgβπΊ)βπ))) |
65 | 64 | eqeq2d 2743 |
. . . . . . 7
β’ (π = (iEdgβπΊ) β ((( I βΎ π) β ((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ)) β (( I βΎ π) β ((iEdgβπΊ)βπ)) = ((iEdgβπ»)β((iEdgβπΊ)βπ)))) |
66 | 65 | ralbidv 3177 |
. . . . . 6
β’ (π = (iEdgβπΊ) β (βπ β dom (iEdgβπΊ)(( I βΎ π) β ((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ)) β βπ β dom (iEdgβπΊ)(( I βΎ π) β ((iEdgβπΊ)βπ)) = ((iEdgβπ»)β((iEdgβπΊ)βπ)))) |
67 | 62, 66 | anbi12d 631 |
. . . . 5
β’ (π = (iEdgβπΊ) β ((π:dom (iEdgβπΊ)β1-1-ontoβdom
(iEdgβπ») β§
βπ β dom
(iEdgβπΊ)(( I βΎ
π) β
((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ))) β ((iEdgβπΊ):dom (iEdgβπΊ)β1-1-ontoβdom
(iEdgβπ») β§
βπ β dom
(iEdgβπΊ)(( I βΎ
π) β
((iEdgβπΊ)βπ)) = ((iEdgβπ»)β((iEdgβπΊ)βπ))))) |
68 | 20, 61, 67 | spcedv 3588 |
. . . 4
β’ (πΊ β USHGraph β
βπ(π:dom (iEdgβπΊ)β1-1-ontoβdom
(iEdgβπ») β§
βπ β dom
(iEdgβπΊ)(( I βΎ
π) β
((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ)))) |
69 | 19, 68 | jca 512 |
. . 3
β’ (πΊ β USHGraph β (( I
βΎ π):πβ1-1-ontoβ(Vtxβπ») β§ βπ(π:dom (iEdgβπΊ)β1-1-ontoβdom
(iEdgβπ») β§
βπ β dom
(iEdgβπΊ)(( I βΎ
π) β
((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ))))) |
70 | | f1oeq1 6818 |
. . . 4
β’ (π = ( I βΎ π) β (π:πβ1-1-ontoβ(Vtxβπ») β ( I βΎ π):πβ1-1-ontoβ(Vtxβπ»))) |
71 | | imaeq1 6052 |
. . . . . . . 8
β’ (π = ( I βΎ π) β (π β ((iEdgβπΊ)βπ)) = (( I βΎ π) β ((iEdgβπΊ)βπ))) |
72 | 71 | eqeq1d 2734 |
. . . . . . 7
β’ (π = ( I βΎ π) β ((π β ((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ)) β (( I βΎ π) β ((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ)))) |
73 | 72 | ralbidv 3177 |
. . . . . 6
β’ (π = ( I βΎ π) β (βπ β dom (iEdgβπΊ)(π β ((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ)) β βπ β dom (iEdgβπΊ)(( I βΎ π) β ((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ)))) |
74 | 73 | anbi2d 629 |
. . . . 5
β’ (π = ( I βΎ π) β ((π:dom (iEdgβπΊ)β1-1-ontoβdom
(iEdgβπ») β§
βπ β dom
(iEdgβπΊ)(π β ((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ))) β (π:dom (iEdgβπΊ)β1-1-ontoβdom
(iEdgβπ») β§
βπ β dom
(iEdgβπΊ)(( I βΎ
π) β
((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ))))) |
75 | 74 | exbidv 1924 |
. . . 4
β’ (π = ( I βΎ π) β (βπ(π:dom (iEdgβπΊ)β1-1-ontoβdom
(iEdgβπ») β§
βπ β dom
(iEdgβπΊ)(π β ((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ))) β βπ(π:dom (iEdgβπΊ)β1-1-ontoβdom
(iEdgβπ») β§
βπ β dom
(iEdgβπΊ)(( I βΎ
π) β
((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ))))) |
76 | 70, 75 | anbi12d 631 |
. . 3
β’ (π = ( I βΎ π) β ((π:πβ1-1-ontoβ(Vtxβπ») β§ βπ(π:dom (iEdgβπΊ)β1-1-ontoβdom
(iEdgβπ») β§
βπ β dom
(iEdgβπΊ)(π β ((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ)))) β (( I βΎ π):πβ1-1-ontoβ(Vtxβπ») β§ βπ(π:dom (iEdgβπΊ)β1-1-ontoβdom
(iEdgβπ») β§
βπ β dom
(iEdgβπΊ)(( I βΎ
π) β
((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ)))))) |
77 | 4, 69, 76 | spcedv 3588 |
. 2
β’ (πΊ β USHGraph β
βπ(π:πβ1-1-ontoβ(Vtxβπ») β§ βπ(π:dom (iEdgβπΊ)β1-1-ontoβdom
(iEdgβπ») β§
βπ β dom
(iEdgβπΊ)(π β ((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ))))) |
78 | | opex 5463 |
. . . 4
β’
β¨π, ( I βΎ
πΈ)β© β
V |
79 | 7, 78 | eqeltri 2829 |
. . 3
β’ π» β V |
80 | | eqid 2732 |
. . . 4
β’
(Vtxβπ») =
(Vtxβπ») |
81 | | eqid 2732 |
. . . 4
β’
(iEdgβπ») =
(iEdgβπ») |
82 | 1, 80, 21, 81 | isomgr 46477 |
. . 3
β’ ((πΊ β USHGraph β§ π» β V) β (πΊ IsomGr π» β βπ(π:πβ1-1-ontoβ(Vtxβπ») β§ βπ(π:dom (iEdgβπΊ)β1-1-ontoβdom
(iEdgβπ») β§
βπ β dom
(iEdgβπΊ)(π β ((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ)))))) |
83 | 79, 82 | mpan2 689 |
. 2
β’ (πΊ β USHGraph β (πΊ IsomGr π» β βπ(π:πβ1-1-ontoβ(Vtxβπ») β§ βπ(π:dom (iEdgβπΊ)β1-1-ontoβdom
(iEdgβπ») β§
βπ β dom
(iEdgβπΊ)(π β ((iEdgβπΊ)βπ)) = ((iEdgβπ»)β(πβπ)))))) |
84 | 77, 83 | mpbird 256 |
1
β’ (πΊ β USHGraph β πΊ IsomGr π») |