Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ushrisomgr Structured version   Visualization version   GIF version

Theorem ushrisomgr 42577
Description: A simple hypergraph (with arbitrarily indexed edges) is isomorphic to a graph with the same vertices and the same edges, indexed by the edges themselves. (Contributed by AV, 11-Nov-2022.)
Hypotheses
Ref Expression
ushrisomgr.v 𝑉 = (Vtx‘𝐺)
ushrisomgr.e 𝐸 = (Edg‘𝐺)
ushrisomgr.s 𝐻 = ⟨𝑉, ( I ↾ 𝐸)⟩
Assertion
Ref Expression
ushrisomgr (𝐺 ∈ USHGraph → 𝐺 IsomGr 𝐻)

Proof of Theorem ushrisomgr
Dummy variables 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ushrisomgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21fvexi 6451 . . . . 5 𝑉 ∈ V
32a1i 11 . . . 4 (𝐺 ∈ USHGraph → 𝑉 ∈ V)
43resiexd 6741 . . 3 (𝐺 ∈ USHGraph → ( I ↾ 𝑉) ∈ V)
5 f1oi 6419 . . . . . 6 ( I ↾ 𝑉):𝑉1-1-onto𝑉
65a1i 11 . . . . 5 (𝐺 ∈ USHGraph → ( I ↾ 𝑉):𝑉1-1-onto𝑉)
7 ushrisomgr.s . . . . . . . 8 𝐻 = ⟨𝑉, ( I ↾ 𝐸)⟩
87fveq2i 6440 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩)
9 ushrisomgr.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
109fvexi 6451 . . . . . . . . . 10 𝐸 ∈ V
11 id 22 . . . . . . . . . . 11 (𝐸 ∈ V → 𝐸 ∈ V)
1211resiexd 6741 . . . . . . . . . 10 (𝐸 ∈ V → ( I ↾ 𝐸) ∈ V)
1310, 12ax-mp 5 . . . . . . . . 9 ( I ↾ 𝐸) ∈ V
142, 13pm3.2i 464 . . . . . . . 8 (𝑉 ∈ V ∧ ( I ↾ 𝐸) ∈ V)
15 opvtxfv 26309 . . . . . . . 8 ((𝑉 ∈ V ∧ ( I ↾ 𝐸) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
1614, 15mp1i 13 . . . . . . 7 (𝐺 ∈ USHGraph → (Vtx‘⟨𝑉, ( I ↾ 𝐸)⟩) = 𝑉)
178, 16syl5eq 2873 . . . . . 6 (𝐺 ∈ USHGraph → (Vtx‘𝐻) = 𝑉)
1817f1oeq3d 6379 . . . . 5 (𝐺 ∈ USHGraph → (( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻) ↔ ( I ↾ 𝑉):𝑉1-1-onto𝑉))
196, 18mpbird 249 . . . 4 (𝐺 ∈ USHGraph → ( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻))
20 fvexd 6452 . . . . 5 (𝐺 ∈ USHGraph → (iEdg‘𝐺) ∈ V)
21 eqid 2825 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
221, 21ushgrf 26368 . . . . . . . 8 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅}))
23 f1f1orn 6393 . . . . . . . 8 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺))
2422, 23syl 17 . . . . . . 7 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺))
257fveq2i 6440 . . . . . . . . . . 11 (iEdg‘𝐻) = (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩)
2610a1i 11 . . . . . . . . . . . . 13 (𝐺 ∈ USHGraph → 𝐸 ∈ V)
2726resiexd 6741 . . . . . . . . . . . 12 (𝐺 ∈ USHGraph → ( I ↾ 𝐸) ∈ V)
28 opiedgfv 26312 . . . . . . . . . . . 12 ((𝑉 ∈ V ∧ ( I ↾ 𝐸) ∈ V) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
292, 27, 28sylancr 581 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
3025, 29syl5eq 2873 . . . . . . . . . 10 (𝐺 ∈ USHGraph → (iEdg‘𝐻) = ( I ↾ 𝐸))
3130dmeqd 5562 . . . . . . . . 9 (𝐺 ∈ USHGraph → dom (iEdg‘𝐻) = dom ( I ↾ 𝐸))
32 dmresi 5704 . . . . . . . . . 10 dom ( I ↾ 𝐸) = 𝐸
339a1i 11 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → 𝐸 = (Edg‘𝐺))
34 edgval 26354 . . . . . . . . . . 11 (Edg‘𝐺) = ran (iEdg‘𝐺)
3533, 34syl6eq 2877 . . . . . . . . . 10 (𝐺 ∈ USHGraph → 𝐸 = ran (iEdg‘𝐺))
3632, 35syl5eq 2873 . . . . . . . . 9 (𝐺 ∈ USHGraph → dom ( I ↾ 𝐸) = ran (iEdg‘𝐺))
3731, 36eqtrd 2861 . . . . . . . 8 (𝐺 ∈ USHGraph → dom (iEdg‘𝐻) = ran (iEdg‘𝐺))
3837f1oeq3d 6379 . . . . . . 7 (𝐺 ∈ USHGraph → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺)))
3924, 38mpbird 249 . . . . . 6 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))
40 ushgruhgr 26374 . . . . . . . . . 10 (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)
411, 21uhgrss 26369 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ 𝑉)
4240, 41sylan 575 . . . . . . . . 9 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ⊆ 𝑉)
43 resiima 5725 . . . . . . . . 9 (((iEdg‘𝐺)‘𝑖) ⊆ 𝑉 → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
4442, 43syl 17 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
45 f1f 6342 . . . . . . . . . . . . 13 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 𝑉 ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
4622, 45syl 17 . . . . . . . . . . . 12 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
4746ffund 6286 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → Fun (iEdg‘𝐺))
48 fvelrn 6606 . . . . . . . . . . 11 ((Fun (iEdg‘𝐺) ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ ran (iEdg‘𝐺))
4947, 48sylan 575 . . . . . . . . . 10 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ ran (iEdg‘𝐺))
509, 34eqtri 2849 . . . . . . . . . 10 𝐸 = ran (iEdg‘𝐺)
5149, 50syl6eleqr 2917 . . . . . . . . 9 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ 𝐸)
52 fvresi 6696 . . . . . . . . 9 (((iEdg‘𝐺)‘𝑖) ∈ 𝐸 → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
5351, 52syl 17 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐺)‘𝑖))
5410a1i 11 . . . . . . . . . . . 12 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → 𝐸 ∈ V)
5554resiexd 6741 . . . . . . . . . . 11 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ( I ↾ 𝐸) ∈ V)
562, 55, 28sylancr 581 . . . . . . . . . 10 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (iEdg‘⟨𝑉, ( I ↾ 𝐸)⟩) = ( I ↾ 𝐸))
5725, 56syl5req 2874 . . . . . . . . 9 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ( I ↾ 𝐸) = (iEdg‘𝐻))
5857fveq1d 6439 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝐸)‘((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))
5944, 53, 583eqtr2d 2867 . . . . . . 7 ((𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))
6059ralrimiva 3175 . . . . . 6 (𝐺 ∈ USHGraph → ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))
6139, 60jca 507 . . . . 5 (𝐺 ∈ USHGraph → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))))
62 f1oeq1 6371 . . . . . 6 (𝑔 = (iEdg‘𝐺) → (𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)))
63 fveq1 6436 . . . . . . . . 9 (𝑔 = (iEdg‘𝐺) → (𝑔𝑖) = ((iEdg‘𝐺)‘𝑖))
6463fveq2d 6441 . . . . . . . 8 (𝑔 = (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑔𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))
6564eqeq2d 2835 . . . . . . 7 (𝑔 = (iEdg‘𝐺) → ((( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)) ↔ (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))))
6665ralbidv 3195 . . . . . 6 (𝑔 = (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖))))
6762, 66anbi12d 624 . . . . 5 (𝑔 = (iEdg‘𝐺) → ((𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))) ↔ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((iEdg‘𝐺)‘𝑖)))))
6820, 61, 67elabd 3573 . . . 4 (𝐺 ∈ USHGraph → ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))
6919, 68jca 507 . . 3 (𝐺 ∈ USHGraph → (( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))))
70 f1oeq1 6371 . . . 4 (𝑓 = ( I ↾ 𝑉) → (𝑓:𝑉1-1-onto→(Vtx‘𝐻) ↔ ( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻)))
71 imaeq1 5706 . . . . . . . 8 (𝑓 = ( I ↾ 𝑉) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)))
7271eqeq1d 2827 . . . . . . 7 (𝑓 = ( I ↾ 𝑉) → ((𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)) ↔ (( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))
7372ralbidv 3195 . . . . . 6 (𝑓 = ( I ↾ 𝑉) → (∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))
7473anbi2d 622 . . . . 5 (𝑓 = ( I ↾ 𝑉) → ((𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))) ↔ (𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))))
7574exbidv 2020 . . . 4 (𝑓 = ( I ↾ 𝑉) → (∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))) ↔ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))))
7670, 75anbi12d 624 . . 3 (𝑓 = ( I ↾ 𝑉) → ((𝑓:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))) ↔ (( I ↾ 𝑉):𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(( I ↾ 𝑉) “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))))
774, 69, 76elabd 3573 . 2 (𝐺 ∈ USHGraph → ∃𝑓(𝑓:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖)))))
78 opex 5155 . . . 4 𝑉, ( I ↾ 𝐸)⟩ ∈ V
797, 78eqeltri 2902 . . 3 𝐻 ∈ V
80 eqid 2825 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
81 eqid 2825 . . . 4 (iEdg‘𝐻) = (iEdg‘𝐻)
821, 80, 21, 81isomgr 42559 . . 3 ((𝐺 ∈ USHGraph ∧ 𝐻 ∈ V) → (𝐺 IsomGr 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))))
8379, 82mpan2 682 . 2 (𝐺 ∈ USHGraph → (𝐺 IsomGr 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)(𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑖))))))
8477, 83mpbird 249 1 (𝐺 ∈ USHGraph → 𝐺 IsomGr 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wex 1878  wcel 2164  wral 3117  Vcvv 3414  cdif 3795  wss 3798  c0 4146  𝒫 cpw 4380  {csn 4399  cop 4405   class class class wbr 4875   I cid 5251  dom cdm 5346  ran crn 5347  cres 5348  cima 5349  Fun wfun 6121  wf 6123  1-1wf1 6124  1-1-ontowf1o 6126  cfv 6127  Vtxcvtx 26301  iEdgciedg 26302  Edgcedg 26352  UHGraphcuhgr 26361  USHGraphcushgr 26362   IsomGr cisomgr 42555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-1st 7433  df-2nd 7434  df-vtx 26303  df-iedg 26304  df-edg 26353  df-uhgr 26363  df-ushgr 26364  df-isomgr 42557
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator