![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrf | Structured version Visualization version GIF version |
Description: The edge function of an undirected hypergraph is a function into the power set of the set of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
Ref | Expression |
---|---|
uhgrf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrf.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrf | ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrf.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | uhgrf.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | isuhgr 28792 | . 2 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
4 | 3 | ibi 267 | 1 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∖ cdif 3938 ∅c0 4315 𝒫 cpw 4595 {csn 4621 dom cdm 5667 ⟶wf 6530 ‘cfv 6534 Vtxcvtx 28728 iEdgciedg 28729 UHGraphcuhgr 28788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-nul 5297 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-rab 3425 df-v 3468 df-sbc 3771 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-fv 6542 df-uhgr 28790 |
This theorem is referenced by: uhgrss 28796 uhgrfun 28798 uhgrn0 28799 uhgr0vb 28804 uhgrun 28806 uhgredgn0 28860 2pthon3v 29669 |
Copyright terms: Public domain | W3C validator |