| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrf | Structured version Visualization version GIF version | ||
| Description: The edge function of an undirected hypergraph is a function into the power set of the set of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
| Ref | Expression |
|---|---|
| uhgrf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrf.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgrf | ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrf.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | uhgrf.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | isuhgr 29040 | . 2 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
| 4 | 3 | ibi 267 | 1 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ∅c0 4282 𝒫 cpw 4549 {csn 4575 dom cdm 5619 ⟶wf 6482 ‘cfv 6486 Vtxcvtx 28976 iEdgciedg 28977 UHGraphcuhgr 29036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-uhgr 29038 |
| This theorem is referenced by: uhgrss 29044 uhgrfun 29046 uhgrn0 29047 uhgr0vb 29052 uhgrun 29054 uhgredgn0 29108 2pthon3v 29923 isubgrvtxuhgr 47988 isubgredg 47990 isubgruhgr 47992 isubgr0uhgr 47997 uhgrimisgrgric 48055 |
| Copyright terms: Public domain | W3C validator |