| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrf | Structured version Visualization version GIF version | ||
| Description: The edge function of an undirected hypergraph is a function into the power set of the set of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
| Ref | Expression |
|---|---|
| uhgrf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrf.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgrf | ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrf.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | uhgrf.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | isuhgr 28994 | . 2 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
| 4 | 3 | ibi 267 | 1 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ∅c0 4299 𝒫 cpw 4566 {csn 4592 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 Vtxcvtx 28930 iEdgciedg 28931 UHGraphcuhgr 28990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-uhgr 28992 |
| This theorem is referenced by: uhgrss 28998 uhgrfun 29000 uhgrn0 29001 uhgr0vb 29006 uhgrun 29008 uhgredgn0 29062 2pthon3v 29880 isubgrvtxuhgr 47868 isubgredg 47870 isubgruhgr 47872 isubgr0uhgr 47877 uhgrimisgrgric 47935 |
| Copyright terms: Public domain | W3C validator |