MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrf Structured version   Visualization version   GIF version

Theorem uhgrf 29046
Description: The edge function of an undirected hypergraph is a function into the power set of the set of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.)
Hypotheses
Ref Expression
uhgrf.v 𝑉 = (Vtx‘𝐺)
uhgrf.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrf (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))

Proof of Theorem uhgrf
StepHypRef Expression
1 uhgrf.v . . 3 𝑉 = (Vtx‘𝐺)
2 uhgrf.e . . 3 𝐸 = (iEdg‘𝐺)
31, 2isuhgr 29044 . 2 (𝐺 ∈ UHGraph → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
43ibi 267 1 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3928  c0 4313  𝒫 cpw 4580  {csn 4606  dom cdm 5659  wf 6532  cfv 6536  Vtxcvtx 28980  iEdgciedg 28981  UHGraphcuhgr 29040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-uhgr 29042
This theorem is referenced by:  uhgrss  29048  uhgrfun  29050  uhgrn0  29051  uhgr0vb  29056  uhgrun  29058  uhgredgn0  29112  2pthon3v  29930  isubgrvtxuhgr  47844  isubgredg  47846  isubgruhgr  47848  isubgr0uhgr  47853  uhgrimisgrgric  47911
  Copyright terms: Public domain W3C validator