![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrf | Structured version Visualization version GIF version |
Description: The edge function of an undirected hypergraph is a function into the power set of the set of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
Ref | Expression |
---|---|
uhgrf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrf.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrf | ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrf.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | uhgrf.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | isuhgr 29095 | . 2 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
4 | 3 | ibi 267 | 1 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∅c0 4352 𝒫 cpw 4622 {csn 4648 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 Vtxcvtx 29031 iEdgciedg 29032 UHGraphcuhgr 29091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-uhgr 29093 |
This theorem is referenced by: uhgrss 29099 uhgrfun 29101 uhgrn0 29102 uhgr0vb 29107 uhgrun 29109 uhgredgn0 29163 2pthon3v 29976 isubgrvtxuhgr 47736 isubgruhgr 47738 isubgr0uhgr 47743 uhgrimisgrgric 47783 |
Copyright terms: Public domain | W3C validator |