Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
2 | | ushgredgedgloop.i |
. . . . 5
⊢ 𝐼 = (iEdg‘𝐺) |
3 | 1, 2 | ushgrf 27336 |
. . . 4
⊢ (𝐺 ∈ USHGraph → 𝐼:dom 𝐼–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | 3 | adantr 480 |
. . 3
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐼:dom 𝐼–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})) |
5 | | ssrab2 4009 |
. . 3
⊢ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ⊆ dom 𝐼 |
6 | | f1ores 6714 |
. . 3
⊢ ((𝐼:dom 𝐼–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ⊆ dom 𝐼) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}})) |
7 | 4, 5, 6 | sylancl 585 |
. 2
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}})) |
8 | | ushgredgedgloop.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐼‘𝑥)) |
9 | | ushgredgedgloop.a |
. . . . . . 7
⊢ 𝐴 = {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} |
10 | 9 | a1i 11 |
. . . . . 6
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐴 = {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) |
11 | | eqidd 2739 |
. . . . . 6
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → (𝐼‘𝑥) = (𝐼‘𝑥)) |
12 | 10, 11 | mpteq12dva 5159 |
. . . . 5
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑥 ∈ 𝐴 ↦ (𝐼‘𝑥)) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ↦ (𝐼‘𝑥))) |
13 | 8, 12 | syl5eq 2791 |
. . . 4
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ↦ (𝐼‘𝑥))) |
14 | | f1f 6654 |
. . . . . . 7
⊢ (𝐼:dom 𝐼–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) → 𝐼:dom 𝐼⟶(𝒫 (Vtx‘𝐺) ∖
{∅})) |
15 | 3, 14 | syl 17 |
. . . . . 6
⊢ (𝐺 ∈ USHGraph → 𝐼:dom 𝐼⟶(𝒫 (Vtx‘𝐺) ∖
{∅})) |
16 | 5 | a1i 11 |
. . . . . 6
⊢ (𝐺 ∈ USHGraph → {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ⊆ dom 𝐼) |
17 | 15, 16 | feqresmpt 6820 |
. . . . 5
⊢ (𝐺 ∈ USHGraph → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ↦ (𝐼‘𝑥))) |
18 | 17 | adantr 480 |
. . . 4
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ↦ (𝐼‘𝑥))) |
19 | 13, 18 | eqtr4d 2781 |
. . 3
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 = (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}})) |
20 | | ushgruhgr 27342 |
. . . . . . . 8
⊢ (𝐺 ∈ USHGraph → 𝐺 ∈
UHGraph) |
21 | | eqid 2738 |
. . . . . . . . 9
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
22 | 21 | uhgrfun 27339 |
. . . . . . . 8
⊢ (𝐺 ∈ UHGraph → Fun
(iEdg‘𝐺)) |
23 | 20, 22 | syl 17 |
. . . . . . 7
⊢ (𝐺 ∈ USHGraph → Fun
(iEdg‘𝐺)) |
24 | 2 | funeqi 6439 |
. . . . . . 7
⊢ (Fun
𝐼 ↔ Fun
(iEdg‘𝐺)) |
25 | 23, 24 | sylibr 233 |
. . . . . 6
⊢ (𝐺 ∈ USHGraph → Fun
𝐼) |
26 | 25 | adantr 480 |
. . . . 5
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → Fun 𝐼) |
27 | | dfimafn 6814 |
. . . . 5
⊢ ((Fun
𝐼 ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ⊆ dom 𝐼) → (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) = {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒}) |
28 | 26, 5, 27 | sylancl 585 |
. . . 4
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) = {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒}) |
29 | | fveqeq2 6765 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → ((𝐼‘𝑖) = {𝑁} ↔ (𝐼‘𝑗) = {𝑁})) |
30 | 29 | elrab 3617 |
. . . . . . . . 9
⊢ (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ↔ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁})) |
31 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) → 𝑗 ∈ dom 𝐼) |
32 | | fvelrn 6936 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝐼 ∧ 𝑗 ∈ dom 𝐼) → (𝐼‘𝑗) ∈ ran 𝐼) |
33 | 2 | eqcomi 2747 |
. . . . . . . . . . . . . . . . 17
⊢
(iEdg‘𝐺) =
𝐼 |
34 | 33 | rneqi 5835 |
. . . . . . . . . . . . . . . 16
⊢ ran
(iEdg‘𝐺) = ran 𝐼 |
35 | 32, 34 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝐼 ∧ 𝑗 ∈ dom 𝐼) → (𝐼‘𝑗) ∈ ran (iEdg‘𝐺)) |
36 | 26, 31, 35 | syl2an 595 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁})) → (𝐼‘𝑗) ∈ ran (iEdg‘𝐺)) |
37 | 36 | 3adant3 1130 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → (𝐼‘𝑗) ∈ ran (iEdg‘𝐺)) |
38 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝐼‘𝑗) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼‘𝑗) ∈ ran (iEdg‘𝐺))) |
39 | 38 | eqcoms 2746 |
. . . . . . . . . . . . . 14
⊢ ((𝐼‘𝑗) = 𝑓 → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼‘𝑗) ∈ ran (iEdg‘𝐺))) |
40 | 39 | 3ad2ant3 1133 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼‘𝑗) ∈ ran (iEdg‘𝐺))) |
41 | 37, 40 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → 𝑓 ∈ ran (iEdg‘𝐺)) |
42 | | ushgredgedgloop.e |
. . . . . . . . . . . . . . . 16
⊢ 𝐸 = (Edg‘𝐺) |
43 | | edgval 27322 |
. . . . . . . . . . . . . . . . 17
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
44 | 43 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ USHGraph →
(Edg‘𝐺) = ran
(iEdg‘𝐺)) |
45 | 42, 44 | syl5eq 2791 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ USHGraph → 𝐸 = ran (iEdg‘𝐺)) |
46 | 45 | eleq2d 2824 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ USHGraph → (𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran (iEdg‘𝐺))) |
47 | 46 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran (iEdg‘𝐺))) |
48 | 47 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → (𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran (iEdg‘𝐺))) |
49 | 41, 48 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → 𝑓 ∈ 𝐸) |
50 | | eqeq1 2742 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼‘𝑗) = 𝑓 → ((𝐼‘𝑗) = {𝑁} ↔ 𝑓 = {𝑁})) |
51 | 50 | biimpcd 248 |
. . . . . . . . . . . . . 14
⊢ ((𝐼‘𝑗) = {𝑁} → ((𝐼‘𝑗) = 𝑓 → 𝑓 = {𝑁})) |
52 | 51 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) → ((𝐼‘𝑗) = 𝑓 → 𝑓 = {𝑁})) |
53 | 52 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → ((𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) → ((𝐼‘𝑗) = 𝑓 → 𝑓 = {𝑁}))) |
54 | 53 | 3imp 1109 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → 𝑓 = {𝑁}) |
55 | 49, 54 | jca 511 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁})) |
56 | 55 | 3exp 1117 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → ((𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) → ((𝐼‘𝑗) = 𝑓 → (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁})))) |
57 | 30, 56 | syl5bi 241 |
. . . . . . . 8
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} → ((𝐼‘𝑗) = 𝑓 → (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁})))) |
58 | 57 | rexlimdv 3211 |
. . . . . . 7
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓 → (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁}))) |
59 | 23 | funfnd 6449 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USHGraph →
(iEdg‘𝐺) Fn dom
(iEdg‘𝐺)) |
60 | | fvelrnb 6812 |
. . . . . . . . . . . 12
⊢
((iEdg‘𝐺) Fn
dom (iEdg‘𝐺) →
(𝑓 ∈ ran
(iEdg‘𝐺) ↔
∃𝑗 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓)) |
61 | 59, 60 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USHGraph → (𝑓 ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓)) |
62 | 33 | dmeqi 5802 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ dom
(iEdg‘𝐺) = dom 𝐼 |
63 | 62 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ dom (iEdg‘𝐺) ↔ 𝑗 ∈ dom 𝐼) |
64 | 63 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ dom (iEdg‘𝐺) → 𝑗 ∈ dom 𝐼) |
65 | 64 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → 𝑗 ∈ dom 𝐼) |
66 | 65 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑗 ∈ dom 𝐼) |
67 | 33 | fveq1i 6757 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((iEdg‘𝐺)‘𝑗) = (𝐼‘𝑗) |
68 | 67 | eqeq2i 2751 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 = ((iEdg‘𝐺)‘𝑗) ↔ 𝑓 = (𝐼‘𝑗)) |
69 | 68 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 = ((iEdg‘𝐺)‘𝑗) → 𝑓 = (𝐼‘𝑗)) |
70 | 69 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((iEdg‘𝐺)‘𝑗) = 𝑓 → 𝑓 = (𝐼‘𝑗)) |
71 | 70 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝑓 = {𝑁} ↔ (𝐼‘𝑗) = {𝑁})) |
72 | 71 | biimpcd 248 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = {𝑁} → (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼‘𝑗) = {𝑁})) |
73 | 72 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼‘𝑗) = {𝑁})) |
74 | 73 | adantld 490 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝐼‘𝑗) = {𝑁})) |
75 | 74 | imp 406 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝐼‘𝑗) = {𝑁}) |
76 | 66, 75 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁})) |
77 | 76, 30 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) |
78 | 67 | eqeq1i 2743 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((iEdg‘𝐺)‘𝑗) = 𝑓 ↔ (𝐼‘𝑗) = 𝑓) |
79 | 78 | biimpi 215 |
. . . . . . . . . . . . . . . . . 18
⊢
(((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼‘𝑗) = 𝑓) |
80 | 79 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝐼‘𝑗) = 𝑓) |
81 | 80 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝐼‘𝑗) = 𝑓) |
82 | 77, 81 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ∧ (𝐼‘𝑗) = 𝑓)) |
83 | 82 | ex 412 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ∧ (𝐼‘𝑗) = 𝑓))) |
84 | 83 | reximdv2 3198 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓)) |
85 | 84 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USHGraph → (𝑓 = {𝑁} → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓))) |
86 | 85 | com23 86 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USHGraph →
(∃𝑗 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓))) |
87 | 61, 86 | sylbid 239 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USHGraph → (𝑓 ∈ ran (iEdg‘𝐺) → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓))) |
88 | 46, 87 | sylbid 239 |
. . . . . . . . 9
⊢ (𝐺 ∈ USHGraph → (𝑓 ∈ 𝐸 → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓))) |
89 | 88 | impd 410 |
. . . . . . . 8
⊢ (𝐺 ∈ USHGraph → ((𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁}) → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓)) |
90 | 89 | adantr 480 |
. . . . . . 7
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → ((𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁}) → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓)) |
91 | 58, 90 | impbid 211 |
. . . . . 6
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓 ↔ (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁}))) |
92 | | vex 3426 |
. . . . . . 7
⊢ 𝑓 ∈ V |
93 | | eqeq2 2750 |
. . . . . . . 8
⊢ (𝑒 = 𝑓 → ((𝐼‘𝑗) = 𝑒 ↔ (𝐼‘𝑗) = 𝑓)) |
94 | 93 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑒 = 𝑓 → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒 ↔ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓)) |
95 | 92, 94 | elab 3602 |
. . . . . 6
⊢ (𝑓 ∈ {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒} ↔ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓) |
96 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑒 = 𝑓 → (𝑒 = {𝑁} ↔ 𝑓 = {𝑁})) |
97 | | ushgredgedgloop.b |
. . . . . . 7
⊢ 𝐵 = {𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑁}} |
98 | 96, 97 | elrab2 3620 |
. . . . . 6
⊢ (𝑓 ∈ 𝐵 ↔ (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁})) |
99 | 91, 95, 98 | 3bitr4g 313 |
. . . . 5
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑓 ∈ {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒} ↔ 𝑓 ∈ 𝐵)) |
100 | 99 | eqrdv 2736 |
. . . 4
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒} = 𝐵) |
101 | 28, 100 | eqtr2d 2779 |
. . 3
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐵 = (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}})) |
102 | 19, 10, 101 | f1oeq123d 6694 |
. 2
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}))) |
103 | 7, 102 | mpbird 256 |
1
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) |