| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2737 | . . . . 5
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) | 
| 2 |  | ushgredgedgloop.i | . . . . 5
⊢ 𝐼 = (iEdg‘𝐺) | 
| 3 | 1, 2 | ushgrf 29080 | . . . 4
⊢ (𝐺 ∈ USHGraph → 𝐼:dom 𝐼–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})) | 
| 4 | 3 | adantr 480 | . . 3
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐼:dom 𝐼–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})) | 
| 5 |  | ssrab2 4080 | . . 3
⊢ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ⊆ dom 𝐼 | 
| 6 |  | f1ores 6862 | . . 3
⊢ ((𝐼:dom 𝐼–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ⊆ dom 𝐼) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}})) | 
| 7 | 4, 5, 6 | sylancl 586 | . 2
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}})) | 
| 8 |  | ushgredgedgloop.f | . . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐼‘𝑥)) | 
| 9 |  | ushgredgedgloop.a | . . . . . . 7
⊢ 𝐴 = {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} | 
| 10 | 9 | a1i 11 | . . . . . 6
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐴 = {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) | 
| 11 |  | eqidd 2738 | . . . . . 6
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → (𝐼‘𝑥) = (𝐼‘𝑥)) | 
| 12 | 10, 11 | mpteq12dva 5231 | . . . . 5
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑥 ∈ 𝐴 ↦ (𝐼‘𝑥)) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ↦ (𝐼‘𝑥))) | 
| 13 | 8, 12 | eqtrid 2789 | . . . 4
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ↦ (𝐼‘𝑥))) | 
| 14 |  | f1f 6804 | . . . . . . 7
⊢ (𝐼:dom 𝐼–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) → 𝐼:dom 𝐼⟶(𝒫 (Vtx‘𝐺) ∖
{∅})) | 
| 15 | 3, 14 | syl 17 | . . . . . 6
⊢ (𝐺 ∈ USHGraph → 𝐼:dom 𝐼⟶(𝒫 (Vtx‘𝐺) ∖
{∅})) | 
| 16 | 5 | a1i 11 | . . . . . 6
⊢ (𝐺 ∈ USHGraph → {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ⊆ dom 𝐼) | 
| 17 | 15, 16 | feqresmpt 6978 | . . . . 5
⊢ (𝐺 ∈ USHGraph → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ↦ (𝐼‘𝑥))) | 
| 18 | 17 | adantr 480 | . . . 4
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ↦ (𝐼‘𝑥))) | 
| 19 | 13, 18 | eqtr4d 2780 | . . 3
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 = (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}})) | 
| 20 |  | ushgruhgr 29086 | . . . . . . . 8
⊢ (𝐺 ∈ USHGraph → 𝐺 ∈
UHGraph) | 
| 21 |  | eqid 2737 | . . . . . . . . 9
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) | 
| 22 | 21 | uhgrfun 29083 | . . . . . . . 8
⊢ (𝐺 ∈ UHGraph → Fun
(iEdg‘𝐺)) | 
| 23 | 20, 22 | syl 17 | . . . . . . 7
⊢ (𝐺 ∈ USHGraph → Fun
(iEdg‘𝐺)) | 
| 24 | 2 | funeqi 6587 | . . . . . . 7
⊢ (Fun
𝐼 ↔ Fun
(iEdg‘𝐺)) | 
| 25 | 23, 24 | sylibr 234 | . . . . . 6
⊢ (𝐺 ∈ USHGraph → Fun
𝐼) | 
| 26 | 25 | adantr 480 | . . . . 5
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → Fun 𝐼) | 
| 27 |  | dfimafn 6971 | . . . . 5
⊢ ((Fun
𝐼 ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ⊆ dom 𝐼) → (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) = {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒}) | 
| 28 | 26, 5, 27 | sylancl 586 | . . . 4
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) = {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒}) | 
| 29 |  | fveqeq2 6915 | . . . . . . . . . 10
⊢ (𝑖 = 𝑗 → ((𝐼‘𝑖) = {𝑁} ↔ (𝐼‘𝑗) = {𝑁})) | 
| 30 | 29 | elrab 3692 | . . . . . . . . 9
⊢ (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ↔ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁})) | 
| 31 |  | simpl 482 | . . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) → 𝑗 ∈ dom 𝐼) | 
| 32 |  | fvelrn 7096 | . . . . . . . . . . . . . . . 16
⊢ ((Fun
𝐼 ∧ 𝑗 ∈ dom 𝐼) → (𝐼‘𝑗) ∈ ran 𝐼) | 
| 33 | 2 | eqcomi 2746 | . . . . . . . . . . . . . . . . 17
⊢
(iEdg‘𝐺) =
𝐼 | 
| 34 | 33 | rneqi 5948 | . . . . . . . . . . . . . . . 16
⊢ ran
(iEdg‘𝐺) = ran 𝐼 | 
| 35 | 32, 34 | eleqtrrdi 2852 | . . . . . . . . . . . . . . 15
⊢ ((Fun
𝐼 ∧ 𝑗 ∈ dom 𝐼) → (𝐼‘𝑗) ∈ ran (iEdg‘𝐺)) | 
| 36 | 26, 31, 35 | syl2an 596 | . . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁})) → (𝐼‘𝑗) ∈ ran (iEdg‘𝐺)) | 
| 37 | 36 | 3adant3 1133 | . . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → (𝐼‘𝑗) ∈ ran (iEdg‘𝐺)) | 
| 38 |  | eleq1 2829 | . . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝐼‘𝑗) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼‘𝑗) ∈ ran (iEdg‘𝐺))) | 
| 39 | 38 | eqcoms 2745 | . . . . . . . . . . . . . 14
⊢ ((𝐼‘𝑗) = 𝑓 → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼‘𝑗) ∈ ran (iEdg‘𝐺))) | 
| 40 | 39 | 3ad2ant3 1136 | . . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼‘𝑗) ∈ ran (iEdg‘𝐺))) | 
| 41 | 37, 40 | mpbird 257 | . . . . . . . . . . . 12
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → 𝑓 ∈ ran (iEdg‘𝐺)) | 
| 42 |  | ushgredgedgloop.e | . . . . . . . . . . . . . . . 16
⊢ 𝐸 = (Edg‘𝐺) | 
| 43 |  | edgval 29066 | . . . . . . . . . . . . . . . . 17
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) | 
| 44 | 43 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ USHGraph →
(Edg‘𝐺) = ran
(iEdg‘𝐺)) | 
| 45 | 42, 44 | eqtrid 2789 | . . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ USHGraph → 𝐸 = ran (iEdg‘𝐺)) | 
| 46 | 45 | eleq2d 2827 | . . . . . . . . . . . . . 14
⊢ (𝐺 ∈ USHGraph → (𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran (iEdg‘𝐺))) | 
| 47 | 46 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran (iEdg‘𝐺))) | 
| 48 | 47 | 3ad2ant1 1134 | . . . . . . . . . . . 12
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → (𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran (iEdg‘𝐺))) | 
| 49 | 41, 48 | mpbird 257 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → 𝑓 ∈ 𝐸) | 
| 50 |  | eqeq1 2741 | . . . . . . . . . . . . . . 15
⊢ ((𝐼‘𝑗) = 𝑓 → ((𝐼‘𝑗) = {𝑁} ↔ 𝑓 = {𝑁})) | 
| 51 | 50 | biimpcd 249 | . . . . . . . . . . . . . 14
⊢ ((𝐼‘𝑗) = {𝑁} → ((𝐼‘𝑗) = 𝑓 → 𝑓 = {𝑁})) | 
| 52 | 51 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) → ((𝐼‘𝑗) = 𝑓 → 𝑓 = {𝑁})) | 
| 53 | 52 | a1i 11 | . . . . . . . . . . . 12
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → ((𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) → ((𝐼‘𝑗) = 𝑓 → 𝑓 = {𝑁}))) | 
| 54 | 53 | 3imp 1111 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → 𝑓 = {𝑁}) | 
| 55 | 49, 54 | jca 511 | . . . . . . . . . 10
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁})) | 
| 56 | 55 | 3exp 1120 | . . . . . . . . 9
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → ((𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) → ((𝐼‘𝑗) = 𝑓 → (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁})))) | 
| 57 | 30, 56 | biimtrid 242 | . . . . . . . 8
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} → ((𝐼‘𝑗) = 𝑓 → (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁})))) | 
| 58 | 57 | rexlimdv 3153 | . . . . . . 7
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓 → (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁}))) | 
| 59 | 23 | funfnd 6597 | . . . . . . . . . . . 12
⊢ (𝐺 ∈ USHGraph →
(iEdg‘𝐺) Fn dom
(iEdg‘𝐺)) | 
| 60 |  | fvelrnb 6969 | . . . . . . . . . . . 12
⊢
((iEdg‘𝐺) Fn
dom (iEdg‘𝐺) →
(𝑓 ∈ ran
(iEdg‘𝐺) ↔
∃𝑗 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓)) | 
| 61 | 59, 60 | syl 17 | . . . . . . . . . . 11
⊢ (𝐺 ∈ USHGraph → (𝑓 ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓)) | 
| 62 | 33 | dmeqi 5915 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ dom
(iEdg‘𝐺) = dom 𝐼 | 
| 63 | 62 | eleq2i 2833 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ dom (iEdg‘𝐺) ↔ 𝑗 ∈ dom 𝐼) | 
| 64 | 63 | biimpi 216 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ dom (iEdg‘𝐺) → 𝑗 ∈ dom 𝐼) | 
| 65 | 64 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → 𝑗 ∈ dom 𝐼) | 
| 66 | 65 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑗 ∈ dom 𝐼) | 
| 67 | 33 | fveq1i 6907 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((iEdg‘𝐺)‘𝑗) = (𝐼‘𝑗) | 
| 68 | 67 | eqeq2i 2750 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 = ((iEdg‘𝐺)‘𝑗) ↔ 𝑓 = (𝐼‘𝑗)) | 
| 69 | 68 | biimpi 216 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 = ((iEdg‘𝐺)‘𝑗) → 𝑓 = (𝐼‘𝑗)) | 
| 70 | 69 | eqcoms 2745 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((iEdg‘𝐺)‘𝑗) = 𝑓 → 𝑓 = (𝐼‘𝑗)) | 
| 71 | 70 | eqeq1d 2739 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝑓 = {𝑁} ↔ (𝐼‘𝑗) = {𝑁})) | 
| 72 | 71 | biimpcd 249 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = {𝑁} → (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼‘𝑗) = {𝑁})) | 
| 73 | 72 | adantl 481 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼‘𝑗) = {𝑁})) | 
| 74 | 73 | adantld 490 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝐼‘𝑗) = {𝑁})) | 
| 75 | 74 | imp 406 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝐼‘𝑗) = {𝑁}) | 
| 76 | 66, 75 | jca 511 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁})) | 
| 77 | 76, 30 | sylibr 234 | . . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) | 
| 78 | 67 | eqeq1i 2742 | . . . . . . . . . . . . . . . . . . 19
⊢
(((iEdg‘𝐺)‘𝑗) = 𝑓 ↔ (𝐼‘𝑗) = 𝑓) | 
| 79 | 78 | biimpi 216 | . . . . . . . . . . . . . . . . . 18
⊢
(((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼‘𝑗) = 𝑓) | 
| 80 | 79 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝐼‘𝑗) = 𝑓) | 
| 81 | 80 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝐼‘𝑗) = 𝑓) | 
| 82 | 77, 81 | jca 511 | . . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ∧ (𝐼‘𝑗) = 𝑓)) | 
| 83 | 82 | ex 412 | . . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ∧ (𝐼‘𝑗) = 𝑓))) | 
| 84 | 83 | reximdv2 3164 | . . . . . . . . . . . . 13
⊢ ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓)) | 
| 85 | 84 | ex 412 | . . . . . . . . . . . 12
⊢ (𝐺 ∈ USHGraph → (𝑓 = {𝑁} → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓))) | 
| 86 | 85 | com23 86 | . . . . . . . . . . 11
⊢ (𝐺 ∈ USHGraph →
(∃𝑗 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓))) | 
| 87 | 61, 86 | sylbid 240 | . . . . . . . . . 10
⊢ (𝐺 ∈ USHGraph → (𝑓 ∈ ran (iEdg‘𝐺) → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓))) | 
| 88 | 46, 87 | sylbid 240 | . . . . . . . . 9
⊢ (𝐺 ∈ USHGraph → (𝑓 ∈ 𝐸 → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓))) | 
| 89 | 88 | impd 410 | . . . . . . . 8
⊢ (𝐺 ∈ USHGraph → ((𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁}) → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓)) | 
| 90 | 89 | adantr 480 | . . . . . . 7
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → ((𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁}) → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓)) | 
| 91 | 58, 90 | impbid 212 | . . . . . 6
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓 ↔ (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁}))) | 
| 92 |  | vex 3484 | . . . . . . 7
⊢ 𝑓 ∈ V | 
| 93 |  | eqeq2 2749 | . . . . . . . 8
⊢ (𝑒 = 𝑓 → ((𝐼‘𝑗) = 𝑒 ↔ (𝐼‘𝑗) = 𝑓)) | 
| 94 | 93 | rexbidv 3179 | . . . . . . 7
⊢ (𝑒 = 𝑓 → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒 ↔ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓)) | 
| 95 | 92, 94 | elab 3679 | . . . . . 6
⊢ (𝑓 ∈ {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒} ↔ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓) | 
| 96 |  | eqeq1 2741 | . . . . . . 7
⊢ (𝑒 = 𝑓 → (𝑒 = {𝑁} ↔ 𝑓 = {𝑁})) | 
| 97 |  | ushgredgedgloop.b | . . . . . . 7
⊢ 𝐵 = {𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑁}} | 
| 98 | 96, 97 | elrab2 3695 | . . . . . 6
⊢ (𝑓 ∈ 𝐵 ↔ (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁})) | 
| 99 | 91, 95, 98 | 3bitr4g 314 | . . . . 5
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑓 ∈ {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒} ↔ 𝑓 ∈ 𝐵)) | 
| 100 | 99 | eqrdv 2735 | . . . 4
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒} = 𝐵) | 
| 101 | 28, 100 | eqtr2d 2778 | . . 3
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐵 = (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}})) | 
| 102 | 19, 10, 101 | f1oeq123d 6842 | . 2
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}))) | 
| 103 | 7, 102 | mpbird 257 | 1
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) |