MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ushgredgedgloop Structured version   Visualization version   GIF version

Theorem ushgredgedgloop 27013
Description: In a simple hypergraph there is a 1-1 onto mapping between the indexed edges being loops at a fixed vertex 𝑁 and the set of loops at this vertex 𝑁. (Contributed by AV, 11-Dec-2020.) (Revised by AV, 6-Jul-2022.)
Hypotheses
Ref Expression
ushgredgedgloop.e 𝐸 = (Edg‘𝐺)
ushgredgedgloop.i 𝐼 = (iEdg‘𝐺)
ushgredgedgloop.a 𝐴 = {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}
ushgredgedgloop.b 𝐵 = {𝑒𝐸𝑒 = {𝑁}}
ushgredgedgloop.f 𝐹 = (𝑥𝐴 ↦ (𝐼𝑥))
Assertion
Ref Expression
ushgredgedgloop ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐵,𝑒   𝑒,𝐸,𝑖   𝑒,𝐺,𝑖,𝑥   𝑒,𝐼,𝑖,𝑥   𝑒,𝑁,𝑖,𝑥   𝑒,𝑉,𝑖,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑒,𝑖)   𝐵(𝑥,𝑖)   𝐸(𝑥)   𝐹(𝑥,𝑒,𝑖)

Proof of Theorem ushgredgedgloop
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 ushgredgedgloop.i . . . . 5 𝐼 = (iEdg‘𝐺)
31, 2ushgrf 26848 . . . 4 (𝐺 ∈ USHGraph → 𝐼:dom 𝐼1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))
43adantr 483 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐼:dom 𝐼1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))
5 ssrab2 4056 . . 3 {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ⊆ dom 𝐼
6 f1ores 6629 . . 3 ((𝐼:dom 𝐼1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ⊆ dom 𝐼) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}))
74, 5, 6sylancl 588 . 2 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}))
8 ushgredgedgloop.f . . . . 5 𝐹 = (𝑥𝐴 ↦ (𝐼𝑥))
9 ushgredgedgloop.a . . . . . . 7 𝐴 = {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}
109a1i 11 . . . . . 6 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐴 = {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}})
11 eqidd 2822 . . . . . 6 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ 𝑥𝐴) → (𝐼𝑥) = (𝐼𝑥))
1210, 11mpteq12dva 5150 . . . . 5 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑥𝐴 ↦ (𝐼𝑥)) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ↦ (𝐼𝑥)))
138, 12syl5eq 2868 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹 = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ↦ (𝐼𝑥)))
14 f1f 6575 . . . . . . 7 (𝐼:dom 𝐼1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) → 𝐼:dom 𝐼⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
153, 14syl 17 . . . . . 6 (𝐺 ∈ USHGraph → 𝐼:dom 𝐼⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
165a1i 11 . . . . . 6 (𝐺 ∈ USHGraph → {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ⊆ dom 𝐼)
1715, 16feqresmpt 6734 . . . . 5 (𝐺 ∈ USHGraph → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ↦ (𝐼𝑥)))
1817adantr 483 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ↦ (𝐼𝑥)))
1913, 18eqtr4d 2859 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹 = (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}))
20 ushgruhgr 26854 . . . . . . . 8 (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)
21 eqid 2821 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
2221uhgrfun 26851 . . . . . . . 8 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2320, 22syl 17 . . . . . . 7 (𝐺 ∈ USHGraph → Fun (iEdg‘𝐺))
242funeqi 6376 . . . . . . 7 (Fun 𝐼 ↔ Fun (iEdg‘𝐺))
2523, 24sylibr 236 . . . . . 6 (𝐺 ∈ USHGraph → Fun 𝐼)
2625adantr 483 . . . . 5 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → Fun 𝐼)
27 dfimafn 6728 . . . . 5 ((Fun 𝐼 ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ⊆ dom 𝐼) → (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}) = {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒})
2826, 5, 27sylancl 588 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}) = {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒})
29 fveqeq2 6679 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐼𝑖) = {𝑁} ↔ (𝐼𝑗) = {𝑁}))
3029elrab 3680 . . . . . . . . 9 (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ↔ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}))
31 simpl 485 . . . . . . . . . . . . . . 15 ((𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) → 𝑗 ∈ dom 𝐼)
32 fvelrn 6844 . . . . . . . . . . . . . . . 16 ((Fun 𝐼𝑗 ∈ dom 𝐼) → (𝐼𝑗) ∈ ran 𝐼)
332eqcomi 2830 . . . . . . . . . . . . . . . . 17 (iEdg‘𝐺) = 𝐼
3433rneqi 5807 . . . . . . . . . . . . . . . 16 ran (iEdg‘𝐺) = ran 𝐼
3532, 34eleqtrrdi 2924 . . . . . . . . . . . . . . 15 ((Fun 𝐼𝑗 ∈ dom 𝐼) → (𝐼𝑗) ∈ ran (iEdg‘𝐺))
3626, 31, 35syl2an 597 . . . . . . . . . . . . . 14 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁})) → (𝐼𝑗) ∈ ran (iEdg‘𝐺))
37363adant3 1128 . . . . . . . . . . . . 13 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → (𝐼𝑗) ∈ ran (iEdg‘𝐺))
38 eleq1 2900 . . . . . . . . . . . . . . 15 (𝑓 = (𝐼𝑗) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼𝑗) ∈ ran (iEdg‘𝐺)))
3938eqcoms 2829 . . . . . . . . . . . . . 14 ((𝐼𝑗) = 𝑓 → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼𝑗) ∈ ran (iEdg‘𝐺)))
40393ad2ant3 1131 . . . . . . . . . . . . 13 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼𝑗) ∈ ran (iEdg‘𝐺)))
4137, 40mpbird 259 . . . . . . . . . . . 12 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → 𝑓 ∈ ran (iEdg‘𝐺))
42 ushgredgedgloop.e . . . . . . . . . . . . . . . 16 𝐸 = (Edg‘𝐺)
43 edgval 26834 . . . . . . . . . . . . . . . . 17 (Edg‘𝐺) = ran (iEdg‘𝐺)
4443a1i 11 . . . . . . . . . . . . . . . 16 (𝐺 ∈ USHGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
4542, 44syl5eq 2868 . . . . . . . . . . . . . . 15 (𝐺 ∈ USHGraph → 𝐸 = ran (iEdg‘𝐺))
4645eleq2d 2898 . . . . . . . . . . . . . 14 (𝐺 ∈ USHGraph → (𝑓𝐸𝑓 ∈ ran (iEdg‘𝐺)))
4746adantr 483 . . . . . . . . . . . . 13 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑓𝐸𝑓 ∈ ran (iEdg‘𝐺)))
48473ad2ant1 1129 . . . . . . . . . . . 12 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → (𝑓𝐸𝑓 ∈ ran (iEdg‘𝐺)))
4941, 48mpbird 259 . . . . . . . . . . 11 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → 𝑓𝐸)
50 eqeq1 2825 . . . . . . . . . . . . . . 15 ((𝐼𝑗) = 𝑓 → ((𝐼𝑗) = {𝑁} ↔ 𝑓 = {𝑁}))
5150biimpcd 251 . . . . . . . . . . . . . 14 ((𝐼𝑗) = {𝑁} → ((𝐼𝑗) = 𝑓𝑓 = {𝑁}))
5251adantl 484 . . . . . . . . . . . . 13 ((𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) → ((𝐼𝑗) = 𝑓𝑓 = {𝑁}))
5352a1i 11 . . . . . . . . . . . 12 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) → ((𝐼𝑗) = 𝑓𝑓 = {𝑁})))
54533imp 1107 . . . . . . . . . . 11 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → 𝑓 = {𝑁})
5549, 54jca 514 . . . . . . . . . 10 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → (𝑓𝐸𝑓 = {𝑁}))
56553exp 1115 . . . . . . . . 9 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) → ((𝐼𝑗) = 𝑓 → (𝑓𝐸𝑓 = {𝑁}))))
5730, 56syl5bi 244 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} → ((𝐼𝑗) = 𝑓 → (𝑓𝐸𝑓 = {𝑁}))))
5857rexlimdv 3283 . . . . . . 7 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓 → (𝑓𝐸𝑓 = {𝑁})))
5923funfnd 6386 . . . . . . . . . . . 12 (𝐺 ∈ USHGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
60 fvelrnb 6726 . . . . . . . . . . . 12 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓))
6159, 60syl 17 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → (𝑓 ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓))
6233dmeqi 5773 . . . . . . . . . . . . . . . . . . . . . 22 dom (iEdg‘𝐺) = dom 𝐼
6362eleq2i 2904 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ dom (iEdg‘𝐺) ↔ 𝑗 ∈ dom 𝐼)
6463biimpi 218 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ dom (iEdg‘𝐺) → 𝑗 ∈ dom 𝐼)
6564adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → 𝑗 ∈ dom 𝐼)
6665adantl 484 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑗 ∈ dom 𝐼)
6733fveq1i 6671 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((iEdg‘𝐺)‘𝑗) = (𝐼𝑗)
6867eqeq2i 2834 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ((iEdg‘𝐺)‘𝑗) ↔ 𝑓 = (𝐼𝑗))
6968biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = ((iEdg‘𝐺)‘𝑗) → 𝑓 = (𝐼𝑗))
7069eqcoms 2829 . . . . . . . . . . . . . . . . . . . . . . 23 (((iEdg‘𝐺)‘𝑗) = 𝑓𝑓 = (𝐼𝑗))
7170eqeq1d 2823 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝑓 = {𝑁} ↔ (𝐼𝑗) = {𝑁}))
7271biimpcd 251 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = {𝑁} → (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼𝑗) = {𝑁}))
7372adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼𝑗) = {𝑁}))
7473adantld 493 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝐼𝑗) = {𝑁}))
7574imp 409 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝐼𝑗) = {𝑁})
7666, 75jca 514 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}))
7776, 30sylibr 236 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}})
7867eqeq1i 2826 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘𝑗) = 𝑓 ↔ (𝐼𝑗) = 𝑓)
7978biimpi 218 . . . . . . . . . . . . . . . . . 18 (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼𝑗) = 𝑓)
8079adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝐼𝑗) = 𝑓)
8180adantl 484 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝐼𝑗) = 𝑓)
8277, 81jca 514 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ∧ (𝐼𝑗) = 𝑓))
8382ex 415 . . . . . . . . . . . . . 14 ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ∧ (𝐼𝑗) = 𝑓)))
8483reximdv2 3271 . . . . . . . . . . . . 13 ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓))
8584ex 415 . . . . . . . . . . . 12 (𝐺 ∈ USHGraph → (𝑓 = {𝑁} → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓)))
8685com23 86 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓)))
8761, 86sylbid 242 . . . . . . . . . 10 (𝐺 ∈ USHGraph → (𝑓 ∈ ran (iEdg‘𝐺) → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓)))
8846, 87sylbid 242 . . . . . . . . 9 (𝐺 ∈ USHGraph → (𝑓𝐸 → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓)))
8988impd 413 . . . . . . . 8 (𝐺 ∈ USHGraph → ((𝑓𝐸𝑓 = {𝑁}) → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓))
9089adantr 483 . . . . . . 7 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → ((𝑓𝐸𝑓 = {𝑁}) → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓))
9158, 90impbid 214 . . . . . 6 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓 ↔ (𝑓𝐸𝑓 = {𝑁})))
92 vex 3497 . . . . . . 7 𝑓 ∈ V
93 eqeq2 2833 . . . . . . . 8 (𝑒 = 𝑓 → ((𝐼𝑗) = 𝑒 ↔ (𝐼𝑗) = 𝑓))
9493rexbidv 3297 . . . . . . 7 (𝑒 = 𝑓 → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒 ↔ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓))
9592, 94elab 3667 . . . . . 6 (𝑓 ∈ {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒} ↔ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓)
96 eqeq1 2825 . . . . . . 7 (𝑒 = 𝑓 → (𝑒 = {𝑁} ↔ 𝑓 = {𝑁}))
97 ushgredgedgloop.b . . . . . . 7 𝐵 = {𝑒𝐸𝑒 = {𝑁}}
9896, 97elrab2 3683 . . . . . 6 (𝑓𝐵 ↔ (𝑓𝐸𝑓 = {𝑁}))
9991, 95, 983bitr4g 316 . . . . 5 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑓 ∈ {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒} ↔ 𝑓𝐵))
10099eqrdv 2819 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒} = 𝐵)
10128, 100eqtr2d 2857 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐵 = (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}))
10219, 10, 101f1oeq123d 6610 . 2 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐹:𝐴1-1-onto𝐵 ↔ (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}})))
1037, 102mpbird 259 1 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2799  wrex 3139  {crab 3142  cdif 3933  wss 3936  c0 4291  𝒫 cpw 4539  {csn 4567  cmpt 5146  dom cdm 5555  ran crn 5556  cres 5557  cima 5558  Fun wfun 6349   Fn wfn 6350  wf 6351  1-1wf1 6352  1-1-ontowf1o 6354  cfv 6355  Vtxcvtx 26781  iEdgciedg 26782  Edgcedg 26832  UHGraphcuhgr 26841  USHGraphcushgr 26842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-edg 26833  df-uhgr 26843  df-ushgr 26844
This theorem is referenced by:  vtxdushgrfvedg  27272
  Copyright terms: Public domain W3C validator