| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ushgrunop | Structured version Visualization version GIF version | ||
| Description: The union of two (undirected) simple hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are simple hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a (not necessarily simple) hypergraph - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| ushgrun.g | ⊢ (𝜑 → 𝐺 ∈ USHGraph) |
| ushgrun.h | ⊢ (𝜑 → 𝐻 ∈ USHGraph) |
| ushgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| ushgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| ushgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| ushgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| ushgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
| Ref | Expression |
|---|---|
| ushgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ushgrun.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USHGraph) | |
| 2 | ushgruhgr 29013 | . . 3 ⊢ (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| 4 | ushgrun.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USHGraph) | |
| 5 | ushgruhgr 29013 | . . 3 ⊢ (𝐻 ∈ USHGraph → 𝐻 ∈ UHGraph) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
| 7 | ushgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 8 | ushgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 9 | ushgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 10 | ushgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 11 | ushgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
| 12 | 3, 6, 7, 8, 9, 10, 11 | uhgrunop 29019 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∪ cun 3929 ∩ cin 3930 ∅c0 4313 〈cop 4612 dom cdm 5665 ‘cfv 6540 Vtxcvtx 28940 iEdgciedg 28941 UHGraphcuhgr 29000 USHGraphcushgr 29001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fv 6548 df-1st 7995 df-2nd 7996 df-vtx 28942 df-iedg 28943 df-uhgr 29002 df-ushgr 29003 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |