Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ushgrunop | Structured version Visualization version GIF version |
Description: The union of two (undirected) simple hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are simple hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a (not necessarily simple) hypergraph - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) |
Ref | Expression |
---|---|
ushgrun.g | ⊢ (𝜑 → 𝐺 ∈ USHGraph) |
ushgrun.h | ⊢ (𝜑 → 𝐻 ∈ USHGraph) |
ushgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
ushgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
ushgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
ushgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
ushgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
Ref | Expression |
---|---|
ushgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ushgrun.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USHGraph) | |
2 | ushgruhgr 27439 | . . 3 ⊢ (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
4 | ushgrun.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USHGraph) | |
5 | ushgruhgr 27439 | . . 3 ⊢ (𝐻 ∈ USHGraph → 𝐻 ∈ UHGraph) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
7 | ushgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
8 | ushgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
9 | ushgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
10 | ushgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
11 | ushgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
12 | 3, 6, 7, 8, 9, 10, 11 | uhgrunop 27445 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 〈cop 4567 dom cdm 5589 ‘cfv 6433 Vtxcvtx 27366 iEdgciedg 27367 UHGraphcuhgr 27426 USHGraphcushgr 27427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fv 6441 df-1st 7831 df-2nd 7832 df-vtx 27368 df-iedg 27369 df-uhgr 27428 df-ushgr 27429 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |