![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ushgrunop | Structured version Visualization version GIF version |
Description: The union of two (undirected) simple hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are simple hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a (not necessarily simple) hypergraph - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) |
Ref | Expression |
---|---|
ushgrun.g | ⊢ (𝜑 → 𝐺 ∈ USHGraph) |
ushgrun.h | ⊢ (𝜑 → 𝐻 ∈ USHGraph) |
ushgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
ushgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
ushgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
ushgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
ushgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
Ref | Expression |
---|---|
ushgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ushgrun.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USHGraph) | |
2 | ushgruhgr 26551 | . . 3 ⊢ (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
4 | ushgrun.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USHGraph) | |
5 | ushgruhgr 26551 | . . 3 ⊢ (𝐻 ∈ USHGraph → 𝐻 ∈ UHGraph) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
7 | ushgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
8 | ushgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
9 | ushgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
10 | ushgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
11 | ushgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
12 | 3, 6, 7, 8, 9, 10, 11 | uhgrunop 26557 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 ∪ cun 3821 ∩ cin 3822 ∅c0 4172 〈cop 4441 dom cdm 5401 ‘cfv 6182 Vtxcvtx 26478 iEdgciedg 26479 UHGraphcuhgr 26538 USHGraphcushgr 26539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5306 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fv 6190 df-1st 7495 df-2nd 7496 df-vtx 26480 df-iedg 26481 df-uhgr 26540 df-ushgr 26541 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |