MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ushgrunop Structured version   Visualization version   GIF version

Theorem ushgrunop 26789
Description: The union of two (undirected) simple hypergraphs (with the same vertex set) represented as ordered pair: If 𝑉, 𝐸 and 𝑉, 𝐹 are simple hypergraphs, then 𝑉, 𝐸𝐹 is a (not necessarily simple) hypergraph - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
ushgrun.g (𝜑𝐺 ∈ USHGraph)
ushgrun.h (𝜑𝐻 ∈ USHGraph)
ushgrun.e 𝐸 = (iEdg‘𝐺)
ushgrun.f 𝐹 = (iEdg‘𝐻)
ushgrun.vg 𝑉 = (Vtx‘𝐺)
ushgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
ushgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
Assertion
Ref Expression
ushgrunop (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph)

Proof of Theorem ushgrunop
StepHypRef Expression
1 ushgrun.g . . 3 (𝜑𝐺 ∈ USHGraph)
2 ushgruhgr 26781 . . 3 (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)
31, 2syl 17 . 2 (𝜑𝐺 ∈ UHGraph)
4 ushgrun.h . . 3 (𝜑𝐻 ∈ USHGraph)
5 ushgruhgr 26781 . . 3 (𝐻 ∈ USHGraph → 𝐻 ∈ UHGraph)
64, 5syl 17 . 2 (𝜑𝐻 ∈ UHGraph)
7 ushgrun.e . 2 𝐸 = (iEdg‘𝐺)
8 ushgrun.f . 2 𝐹 = (iEdg‘𝐻)
9 ushgrun.vg . 2 𝑉 = (Vtx‘𝐺)
10 ushgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
11 ushgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
123, 6, 7, 8, 9, 10, 11uhgrunop 26787 1 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  cun 3931  cin 3932  c0 4288  cop 4563  dom cdm 5548  cfv 6348  Vtxcvtx 26708  iEdgciedg 26709  UHGraphcuhgr 26768  USHGraphcushgr 26769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fv 6356  df-1st 7678  df-2nd 7679  df-vtx 26710  df-iedg 26711  df-uhgr 26770  df-ushgr 26771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator