MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ushgrunop Structured version   Visualization version   GIF version

Theorem ushgrunop 29055
Description: The union of two (undirected) simple hypergraphs (with the same vertex set) represented as ordered pair: If 𝑉, 𝐸 and 𝑉, 𝐹 are simple hypergraphs, then 𝑉, 𝐸𝐹 is a (not necessarily simple) hypergraph - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
ushgrun.g (𝜑𝐺 ∈ USHGraph)
ushgrun.h (𝜑𝐻 ∈ USHGraph)
ushgrun.e 𝐸 = (iEdg‘𝐺)
ushgrun.f 𝐹 = (iEdg‘𝐻)
ushgrun.vg 𝑉 = (Vtx‘𝐺)
ushgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
ushgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
Assertion
Ref Expression
ushgrunop (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph)

Proof of Theorem ushgrunop
StepHypRef Expression
1 ushgrun.g . . 3 (𝜑𝐺 ∈ USHGraph)
2 ushgruhgr 29047 . . 3 (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)
31, 2syl 17 . 2 (𝜑𝐺 ∈ UHGraph)
4 ushgrun.h . . 3 (𝜑𝐻 ∈ USHGraph)
5 ushgruhgr 29047 . . 3 (𝐻 ∈ USHGraph → 𝐻 ∈ UHGraph)
64, 5syl 17 . 2 (𝜑𝐻 ∈ UHGraph)
7 ushgrun.e . 2 𝐸 = (iEdg‘𝐺)
8 ushgrun.f . 2 𝐹 = (iEdg‘𝐻)
9 ushgrun.vg . 2 𝑉 = (Vtx‘𝐺)
10 ushgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
11 ushgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
123, 6, 7, 8, 9, 10, 11uhgrunop 29053 1 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cun 3895  cin 3896  c0 4280  cop 4579  dom cdm 5614  cfv 6481  Vtxcvtx 28974  iEdgciedg 28975  UHGraphcuhgr 29034  USHGraphcushgr 29035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fv 6489  df-1st 7921  df-2nd 7922  df-vtx 28976  df-iedg 28977  df-uhgr 29036  df-ushgr 29037
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator