| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ushgrun | Structured version Visualization version GIF version | ||
| Description: The union 𝑈 of two (undirected) simple hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a (not necessarily simple) hypergraph with the vertex set 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| ushgrun.g | ⊢ (𝜑 → 𝐺 ∈ USHGraph) |
| ushgrun.h | ⊢ (𝜑 → 𝐻 ∈ USHGraph) |
| ushgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| ushgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| ushgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| ushgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| ushgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
| ushgrun.u | ⊢ (𝜑 → 𝑈 ∈ 𝑊) |
| ushgrun.v | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
| ushgrun.un | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) |
| Ref | Expression |
|---|---|
| ushgrun | ⊢ (𝜑 → 𝑈 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ushgrun.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USHGraph) | |
| 2 | ushgruhgr 29045 | . . 3 ⊢ (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| 4 | ushgrun.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USHGraph) | |
| 5 | ushgruhgr 29045 | . . 3 ⊢ (𝐻 ∈ USHGraph → 𝐻 ∈ UHGraph) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
| 7 | ushgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 8 | ushgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 9 | ushgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 10 | ushgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 11 | ushgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
| 12 | ushgrun.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑊) | |
| 13 | ushgrun.v | . 2 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
| 14 | ushgrun.un | . 2 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) | |
| 15 | 3, 6, 7, 8, 9, 10, 11, 12, 13, 14 | uhgrun 29050 | 1 ⊢ (𝜑 → 𝑈 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cun 3900 ∩ cin 3901 ∅c0 4283 dom cdm 5616 ‘cfv 6481 Vtxcvtx 28972 iEdgciedg 28973 UHGraphcuhgr 29032 USHGraphcushgr 29033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fv 6489 df-uhgr 29034 df-ushgr 29035 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |