| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ushgrun | Structured version Visualization version GIF version | ||
| Description: The union 𝑈 of two (undirected) simple hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a (not necessarily simple) hypergraph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| ushgrun.g | ⊢ (𝜑 → 𝐺 ∈ USHGraph) |
| ushgrun.h | ⊢ (𝜑 → 𝐻 ∈ USHGraph) |
| ushgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| ushgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| ushgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| ushgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| ushgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
| ushgrun.u | ⊢ (𝜑 → 𝑈 ∈ 𝑊) |
| ushgrun.v | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
| ushgrun.un | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) |
| Ref | Expression |
|---|---|
| ushgrun | ⊢ (𝜑 → 𝑈 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ushgrun.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USHGraph) | |
| 2 | ushgruhgr 29003 | . . 3 ⊢ (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| 4 | ushgrun.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USHGraph) | |
| 5 | ushgruhgr 29003 | . . 3 ⊢ (𝐻 ∈ USHGraph → 𝐻 ∈ UHGraph) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
| 7 | ushgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 8 | ushgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 9 | ushgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 10 | ushgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 11 | ushgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
| 12 | ushgrun.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑊) | |
| 13 | ushgrun.v | . 2 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
| 14 | ushgrun.un | . 2 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) | |
| 15 | 3, 6, 7, 8, 9, 10, 11, 12, 13, 14 | uhgrun 29008 | 1 ⊢ (𝜑 → 𝑈 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3920 ∩ cin 3921 ∅c0 4304 dom cdm 5646 ‘cfv 6519 Vtxcvtx 28930 iEdgciedg 28931 UHGraphcuhgr 28990 USHGraphcushgr 28991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fv 6527 df-uhgr 28992 df-ushgr 28993 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |