![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ushgrun | Structured version Visualization version GIF version |
Description: The union 𝑈 of two (undirected) simple hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a (not necessarily simple) hypergraph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) |
Ref | Expression |
---|---|
ushgrun.g | ⊢ (𝜑 → 𝐺 ∈ USHGraph) |
ushgrun.h | ⊢ (𝜑 → 𝐻 ∈ USHGraph) |
ushgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
ushgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
ushgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
ushgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
ushgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
ushgrun.u | ⊢ (𝜑 → 𝑈 ∈ 𝑊) |
ushgrun.v | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
ushgrun.un | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) |
Ref | Expression |
---|---|
ushgrun | ⊢ (𝜑 → 𝑈 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ushgrun.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USHGraph) | |
2 | ushgruhgr 28833 | . . 3 ⊢ (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
4 | ushgrun.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USHGraph) | |
5 | ushgruhgr 28833 | . . 3 ⊢ (𝐻 ∈ USHGraph → 𝐻 ∈ UHGraph) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
7 | ushgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
8 | ushgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
9 | ushgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
10 | ushgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
11 | ushgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
12 | ushgrun.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑊) | |
13 | ushgrun.v | . 2 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
14 | ushgrun.un | . 2 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) | |
15 | 3, 6, 7, 8, 9, 10, 11, 12, 13, 14 | uhgrun 28838 | 1 ⊢ (𝜑 → 𝑈 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∪ cun 3941 ∩ cin 3942 ∅c0 4317 dom cdm 5669 ‘cfv 6536 Vtxcvtx 28760 iEdgciedg 28761 UHGraphcuhgr 28820 USHGraphcushgr 28821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fv 6544 df-uhgr 28822 df-ushgr 28823 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |