MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ushgrun Structured version   Visualization version   GIF version

Theorem ushgrun 29119
Description: The union 𝑈 of two (undirected) simple hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a (not necessarily simple) hypergraph with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
ushgrun.g (𝜑𝐺 ∈ USHGraph)
ushgrun.h (𝜑𝐻 ∈ USHGraph)
ushgrun.e 𝐸 = (iEdg‘𝐺)
ushgrun.f 𝐹 = (iEdg‘𝐻)
ushgrun.vg 𝑉 = (Vtx‘𝐺)
ushgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
ushgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
ushgrun.u (𝜑𝑈𝑊)
ushgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
ushgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
ushgrun (𝜑𝑈 ∈ UHGraph)

Proof of Theorem ushgrun
StepHypRef Expression
1 ushgrun.g . . 3 (𝜑𝐺 ∈ USHGraph)
2 ushgruhgr 29112 . . 3 (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)
31, 2syl 17 . 2 (𝜑𝐺 ∈ UHGraph)
4 ushgrun.h . . 3 (𝜑𝐻 ∈ USHGraph)
5 ushgruhgr 29112 . . 3 (𝐻 ∈ USHGraph → 𝐻 ∈ UHGraph)
64, 5syl 17 . 2 (𝜑𝐻 ∈ UHGraph)
7 ushgrun.e . 2 𝐸 = (iEdg‘𝐺)
8 ushgrun.f . 2 𝐹 = (iEdg‘𝐻)
9 ushgrun.vg . 2 𝑉 = (Vtx‘𝐺)
10 ushgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
11 ushgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
12 ushgrun.u . 2 (𝜑𝑈𝑊)
13 ushgrun.v . 2 (𝜑 → (Vtx‘𝑈) = 𝑉)
14 ushgrun.un . 2 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
153, 6, 7, 8, 9, 10, 11, 12, 13, 14uhgrun 29117 1 (𝜑𝑈 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cun 3964  cin 3965  c0 4342  dom cdm 5693  cfv 6569  Vtxcvtx 29039  iEdgciedg 29040  UHGraphcuhgr 29099  USHGraphcushgr 29100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fv 6577  df-uhgr 29101  df-ushgr 29102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator