![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isuhgrop | Structured version Visualization version GIF version |
Description: The property of being an undirected hypergraph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
Ref | Expression |
---|---|
isuhgrop | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5248 | . . 3 ⊢ 〈𝑉, 𝐸〉 ∈ V | |
2 | eqid 2795 | . . . 4 ⊢ (Vtx‘〈𝑉, 𝐸〉) = (Vtx‘〈𝑉, 𝐸〉) | |
3 | eqid 2795 | . . . 4 ⊢ (iEdg‘〈𝑉, 𝐸〉) = (iEdg‘〈𝑉, 𝐸〉) | |
4 | 2, 3 | isuhgr 26528 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ V → (〈𝑉, 𝐸〉 ∈ UHGraph ↔ (iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)⟶(𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}))) |
5 | 1, 4 | mp1i 13 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ UHGraph ↔ (iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)⟶(𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}))) |
6 | opiedgfv 26475 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
7 | 6 | dmeqd 5660 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → dom (iEdg‘〈𝑉, 𝐸〉) = dom 𝐸) |
8 | opvtxfv 26472 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
9 | 8 | pweqd 4458 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → 𝒫 (Vtx‘〈𝑉, 𝐸〉) = 𝒫 𝑉) |
10 | 9 | difeq1d 4019 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) = (𝒫 𝑉 ∖ {∅})) |
11 | 6, 7, 10 | feq123d 6371 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → ((iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)⟶(𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
12 | 5, 11 | bitrd 280 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∈ wcel 2081 Vcvv 3437 ∖ cdif 3856 ∅c0 4211 𝒫 cpw 4453 {csn 4472 〈cop 4478 dom cdm 5443 ⟶wf 6221 ‘cfv 6225 Vtxcvtx 26464 iEdgciedg 26465 UHGraphcuhgr 26524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-fv 6233 df-1st 7545 df-2nd 7546 df-vtx 26466 df-iedg 26467 df-uhgr 26526 |
This theorem is referenced by: pliguhgr 27954 |
Copyright terms: Public domain | W3C validator |