MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuhgrop Structured version   Visualization version   GIF version

Theorem isuhgrop 29033
Description: The property of being an undirected hypergraph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 9-Oct-2020.)
Assertion
Ref Expression
isuhgrop ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))

Proof of Theorem isuhgrop
StepHypRef Expression
1 opex 5411 . . 3 𝑉, 𝐸⟩ ∈ V
2 eqid 2729 . . . 4 (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩)
3 eqid 2729 . . . 4 (iEdg‘⟨𝑉, 𝐸⟩) = (iEdg‘⟨𝑉, 𝐸⟩)
42, 3isuhgr 29023 . . 3 (⟨𝑉, 𝐸⟩ ∈ V → (⟨𝑉, 𝐸⟩ ∈ UHGraph ↔ (iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)⟶(𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅})))
51, 4mp1i 13 . 2 ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ UHGraph ↔ (iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)⟶(𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅})))
6 opiedgfv 28970 . . 3 ((𝑉𝑊𝐸𝑋) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
76dmeqd 5852 . . 3 ((𝑉𝑊𝐸𝑋) → dom (iEdg‘⟨𝑉, 𝐸⟩) = dom 𝐸)
8 opvtxfv 28967 . . . . 5 ((𝑉𝑊𝐸𝑋) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
98pweqd 4570 . . . 4 ((𝑉𝑊𝐸𝑋) → 𝒫 (Vtx‘⟨𝑉, 𝐸⟩) = 𝒫 𝑉)
109difeq1d 4078 . . 3 ((𝑉𝑊𝐸𝑋) → (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
116, 7, 10feq123d 6645 . 2 ((𝑉𝑊𝐸𝑋) → ((iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)⟶(𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
125, 11bitrd 279 1 ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3438  cdif 3902  c0 4286  𝒫 cpw 4553  {csn 4579  cop 4585  dom cdm 5623  wf 6482  cfv 6486  Vtxcvtx 28959  iEdgciedg 28960  UHGraphcuhgr 29019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-1st 7931  df-2nd 7932  df-vtx 28961  df-iedg 28962  df-uhgr 29021
This theorem is referenced by:  pliguhgr  30448
  Copyright terms: Public domain W3C validator