![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isuhgrop | Structured version Visualization version GIF version |
Description: The property of being an undirected hypergraph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
Ref | Expression |
---|---|
isuhgrop | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (⟨𝑉, 𝐸⟩ ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5464 | . . 3 ⊢ ⟨𝑉, 𝐸⟩ ∈ V | |
2 | eqid 2731 | . . . 4 ⊢ (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩) | |
3 | eqid 2731 | . . . 4 ⊢ (iEdg‘⟨𝑉, 𝐸⟩) = (iEdg‘⟨𝑉, 𝐸⟩) | |
4 | 2, 3 | isuhgr 28588 | . . 3 ⊢ (⟨𝑉, 𝐸⟩ ∈ V → (⟨𝑉, 𝐸⟩ ∈ UHGraph ↔ (iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)⟶(𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}))) |
5 | 1, 4 | mp1i 13 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (⟨𝑉, 𝐸⟩ ∈ UHGraph ↔ (iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)⟶(𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}))) |
6 | opiedgfv 28535 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸) | |
7 | 6 | dmeqd 5905 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → dom (iEdg‘⟨𝑉, 𝐸⟩) = dom 𝐸) |
8 | opvtxfv 28532 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉) | |
9 | 8 | pweqd 4619 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → 𝒫 (Vtx‘⟨𝑉, 𝐸⟩) = 𝒫 𝑉) |
10 | 9 | difeq1d 4121 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) = (𝒫 𝑉 ∖ {∅})) |
11 | 6, 7, 10 | feq123d 6706 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → ((iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)⟶(𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
12 | 5, 11 | bitrd 279 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (⟨𝑉, 𝐸⟩ ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 Vcvv 3473 ∖ cdif 3945 ∅c0 4322 𝒫 cpw 4602 {csn 4628 ⟨cop 4634 dom cdm 5676 ⟶wf 6539 ‘cfv 6543 Vtxcvtx 28524 iEdgciedg 28525 UHGraphcuhgr 28584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-1st 7979 df-2nd 7980 df-vtx 28526 df-iedg 28527 df-uhgr 28586 |
This theorem is referenced by: pliguhgr 30007 |
Copyright terms: Public domain | W3C validator |