Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isuhgrop | Structured version Visualization version GIF version |
Description: The property of being an undirected hypergraph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
Ref | Expression |
---|---|
isuhgrop | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5373 | . . 3 ⊢ 〈𝑉, 𝐸〉 ∈ V | |
2 | eqid 2738 | . . . 4 ⊢ (Vtx‘〈𝑉, 𝐸〉) = (Vtx‘〈𝑉, 𝐸〉) | |
3 | eqid 2738 | . . . 4 ⊢ (iEdg‘〈𝑉, 𝐸〉) = (iEdg‘〈𝑉, 𝐸〉) | |
4 | 2, 3 | isuhgr 27333 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ V → (〈𝑉, 𝐸〉 ∈ UHGraph ↔ (iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)⟶(𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}))) |
5 | 1, 4 | mp1i 13 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ UHGraph ↔ (iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)⟶(𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}))) |
6 | opiedgfv 27280 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
7 | 6 | dmeqd 5803 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → dom (iEdg‘〈𝑉, 𝐸〉) = dom 𝐸) |
8 | opvtxfv 27277 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
9 | 8 | pweqd 4549 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → 𝒫 (Vtx‘〈𝑉, 𝐸〉) = 𝒫 𝑉) |
10 | 9 | difeq1d 4052 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) = (𝒫 𝑉 ∖ {∅})) |
11 | 6, 7, 10 | feq123d 6573 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → ((iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)⟶(𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
12 | 5, 11 | bitrd 278 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ∅c0 4253 𝒫 cpw 4530 {csn 4558 〈cop 4564 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 Vtxcvtx 27269 iEdgciedg 27270 UHGraphcuhgr 27329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-1st 7804 df-2nd 7805 df-vtx 27271 df-iedg 27272 df-uhgr 27331 |
This theorem is referenced by: pliguhgr 28749 |
Copyright terms: Public domain | W3C validator |