![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrun | Structured version Visualization version GIF version |
Description: The union 𝑈 of two simple pseudographs 𝐺 and 𝐻 with the same vertex set 𝑉 is a pseudograph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 16-Oct-2020.) |
Ref | Expression |
---|---|
uspgrun.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
uspgrun.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
uspgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
uspgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
uspgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
uspgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
uspgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
uspgrun.u | ⊢ (𝜑 → 𝑈 ∈ 𝑊) |
uspgrun.v | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
uspgrun.un | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) |
Ref | Expression |
---|---|
uspgrun | ⊢ (𝜑 → 𝑈 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrun.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USPGraph) | |
2 | uspgrupgr 29111 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
4 | uspgrun.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USPGraph) | |
5 | uspgrupgr 29111 | . . 3 ⊢ (𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐻 ∈ UPGraph) |
7 | uspgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
8 | uspgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
9 | uspgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
10 | uspgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
11 | uspgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
12 | uspgrun.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑊) | |
13 | uspgrun.v | . 2 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
14 | uspgrun.un | . 2 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) | |
15 | 3, 6, 7, 8, 9, 10, 11, 12, 13, 14 | upgrun 29051 | 1 ⊢ (𝜑 → 𝑈 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∪ cun 3944 ∩ cin 3945 ∅c0 4322 dom cdm 5674 ‘cfv 6546 Vtxcvtx 28929 iEdgciedg 28930 UPGraphcupgr 29013 USPGraphcuspgr 29081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fv 6554 df-upgr 29015 df-uspgr 29083 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |