| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgrun | Structured version Visualization version GIF version | ||
| Description: The union 𝑈 of two simple pseudographs 𝐺 and 𝐻 with the same vertex set 𝑉 is a pseudograph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 16-Oct-2020.) |
| Ref | Expression |
|---|---|
| uspgrun.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| uspgrun.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| uspgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| uspgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| uspgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| uspgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| uspgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
| uspgrun.u | ⊢ (𝜑 → 𝑈 ∈ 𝑊) |
| uspgrun.v | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
| uspgrun.un | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) |
| Ref | Expression |
|---|---|
| uspgrun | ⊢ (𝜑 → 𝑈 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrun.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USPGraph) | |
| 2 | uspgrupgr 29112 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| 4 | uspgrun.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USPGraph) | |
| 5 | uspgrupgr 29112 | . . 3 ⊢ (𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐻 ∈ UPGraph) |
| 7 | uspgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 8 | uspgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 9 | uspgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 10 | uspgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 11 | uspgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
| 12 | uspgrun.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑊) | |
| 13 | uspgrun.v | . 2 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
| 14 | uspgrun.un | . 2 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) | |
| 15 | 3, 6, 7, 8, 9, 10, 11, 12, 13, 14 | upgrun 29052 | 1 ⊢ (𝜑 → 𝑈 ∈ UPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ∩ cin 3916 ∅c0 4299 dom cdm 5641 ‘cfv 6514 Vtxcvtx 28930 iEdgciedg 28931 UPGraphcupgr 29014 USPGraphcuspgr 29082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fv 6522 df-upgr 29016 df-uspgr 29084 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |