MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrun Structured version   Visualization version   GIF version

Theorem uspgrun 29220
Description: The union 𝑈 of two simple pseudographs 𝐺 and 𝐻 with the same vertex set 𝑉 is a pseudograph with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 16-Oct-2020.)
Hypotheses
Ref Expression
uspgrun.g (𝜑𝐺 ∈ USPGraph)
uspgrun.h (𝜑𝐻 ∈ USPGraph)
uspgrun.e 𝐸 = (iEdg‘𝐺)
uspgrun.f 𝐹 = (iEdg‘𝐻)
uspgrun.vg 𝑉 = (Vtx‘𝐺)
uspgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
uspgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
uspgrun.u (𝜑𝑈𝑊)
uspgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
uspgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
uspgrun (𝜑𝑈 ∈ UPGraph)

Proof of Theorem uspgrun
StepHypRef Expression
1 uspgrun.g . . 3 (𝜑𝐺 ∈ USPGraph)
2 uspgrupgr 29210 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
31, 2syl 17 . 2 (𝜑𝐺 ∈ UPGraph)
4 uspgrun.h . . 3 (𝜑𝐻 ∈ USPGraph)
5 uspgrupgr 29210 . . 3 (𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph)
64, 5syl 17 . 2 (𝜑𝐻 ∈ UPGraph)
7 uspgrun.e . 2 𝐸 = (iEdg‘𝐺)
8 uspgrun.f . 2 𝐹 = (iEdg‘𝐻)
9 uspgrun.vg . 2 𝑉 = (Vtx‘𝐺)
10 uspgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
11 uspgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
12 uspgrun.u . 2 (𝜑𝑈𝑊)
13 uspgrun.v . 2 (𝜑 → (Vtx‘𝑈) = 𝑉)
14 uspgrun.un . 2 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
153, 6, 7, 8, 9, 10, 11, 12, 13, 14upgrun 29150 1 (𝜑𝑈 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cun 3961  cin 3962  c0 4339  dom cdm 5689  cfv 6563  Vtxcvtx 29028  iEdgciedg 29029  UPGraphcupgr 29112  USPGraphcuspgr 29180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fv 6571  df-upgr 29114  df-uspgr 29182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator