![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrunop | Structured version Visualization version GIF version |
Description: The union of two simple pseudographs (with the same vertex set): If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are simple pseudographs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept, maybe resulting incident two edges between two vertices). (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
Ref | Expression |
---|---|
uspgrun.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
uspgrun.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
uspgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
uspgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
uspgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
uspgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
uspgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
Ref | Expression |
---|---|
uspgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrun.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USPGraph) | |
2 | uspgrupgr 29210 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
4 | uspgrun.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USPGraph) | |
5 | uspgrupgr 29210 | . . 3 ⊢ (𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐻 ∈ UPGraph) |
7 | uspgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
8 | uspgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
9 | uspgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
10 | uspgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
11 | uspgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
12 | 3, 6, 7, 8, 9, 10, 11 | upgrunop 29151 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ∩ cin 3962 ∅c0 4339 〈cop 4637 dom cdm 5689 ‘cfv 6563 Vtxcvtx 29028 iEdgciedg 29029 UPGraphcupgr 29112 USPGraphcuspgr 29180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fv 6571 df-1st 8013 df-2nd 8014 df-vtx 29030 df-iedg 29031 df-upgr 29114 df-uspgr 29182 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |