MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrunop Structured version   Visualization version   GIF version

Theorem uspgrunop 29046
Description: The union of two simple pseudographs (with the same vertex set): If 𝑉, 𝐸 and 𝑉, 𝐹 are simple pseudographs, then 𝑉, 𝐸𝐹 is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept, maybe resulting incident two edges between two vertices). (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
uspgrun.g (𝜑𝐺 ∈ USPGraph)
uspgrun.h (𝜑𝐻 ∈ USPGraph)
uspgrun.e 𝐸 = (iEdg‘𝐺)
uspgrun.f 𝐹 = (iEdg‘𝐻)
uspgrun.vg 𝑉 = (Vtx‘𝐺)
uspgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
uspgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
Assertion
Ref Expression
uspgrunop (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UPGraph)

Proof of Theorem uspgrunop
StepHypRef Expression
1 uspgrun.g . . 3 (𝜑𝐺 ∈ USPGraph)
2 uspgrupgr 29035 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
31, 2syl 17 . 2 (𝜑𝐺 ∈ UPGraph)
4 uspgrun.h . . 3 (𝜑𝐻 ∈ USPGraph)
5 uspgrupgr 29035 . . 3 (𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph)
64, 5syl 17 . 2 (𝜑𝐻 ∈ UPGraph)
7 uspgrun.e . 2 𝐸 = (iEdg‘𝐺)
8 uspgrun.f . 2 𝐹 = (iEdg‘𝐻)
9 uspgrun.vg . 2 𝑉 = (Vtx‘𝐺)
10 uspgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
11 uspgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
123, 6, 7, 8, 9, 10, 11upgrunop 28976 1 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cun 3937  cin 3938  c0 4318  cop 4630  dom cdm 5672  cfv 6543  Vtxcvtx 28853  iEdgciedg 28854  UPGraphcupgr 28937  USPGraphcuspgr 29005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3769  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fv 6551  df-1st 7991  df-2nd 7992  df-vtx 28855  df-iedg 28856  df-upgr 28939  df-uspgr 29007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator