| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgrunop | Structured version Visualization version GIF version | ||
| Description: The union of two simple pseudographs (with the same vertex set): If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are simple pseudographs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept, maybe resulting incident two edges between two vertices). (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| uspgrun.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| uspgrun.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| uspgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| uspgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| uspgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| uspgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| uspgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
| Ref | Expression |
|---|---|
| uspgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrun.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USPGraph) | |
| 2 | uspgrupgr 29162 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| 4 | uspgrun.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USPGraph) | |
| 5 | uspgrupgr 29162 | . . 3 ⊢ (𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐻 ∈ UPGraph) |
| 7 | uspgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 8 | uspgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 9 | uspgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 10 | uspgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 11 | uspgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
| 12 | 3, 6, 7, 8, 9, 10, 11 | upgrunop 29103 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 ∩ cin 3930 ∅c0 4313 〈cop 4612 dom cdm 5659 ‘cfv 6536 Vtxcvtx 28980 iEdgciedg 28981 UPGraphcupgr 29064 USPGraphcuspgr 29132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fv 6544 df-1st 7993 df-2nd 7994 df-vtx 28982 df-iedg 28983 df-upgr 29066 df-uspgr 29134 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |