MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrunop Structured version   Visualization version   GIF version

Theorem uspgrunop 26973
Description: The union of two simple pseudographs (with the same vertex set): If 𝑉, 𝐸 and 𝑉, 𝐹 are simple pseudographs, then 𝑉, 𝐸𝐹 is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept, maybe resulting incident two edges between two vertices). (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
uspgrun.g (𝜑𝐺 ∈ USPGraph)
uspgrun.h (𝜑𝐻 ∈ USPGraph)
uspgrun.e 𝐸 = (iEdg‘𝐺)
uspgrun.f 𝐹 = (iEdg‘𝐻)
uspgrun.vg 𝑉 = (Vtx‘𝐺)
uspgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
uspgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
Assertion
Ref Expression
uspgrunop (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UPGraph)

Proof of Theorem uspgrunop
StepHypRef Expression
1 uspgrun.g . . 3 (𝜑𝐺 ∈ USPGraph)
2 uspgrupgr 26963 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
31, 2syl 17 . 2 (𝜑𝐺 ∈ UPGraph)
4 uspgrun.h . . 3 (𝜑𝐻 ∈ USPGraph)
5 uspgrupgr 26963 . . 3 (𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph)
64, 5syl 17 . 2 (𝜑𝐻 ∈ UPGraph)
7 uspgrun.e . 2 𝐸 = (iEdg‘𝐺)
8 uspgrun.f . 2 𝐹 = (iEdg‘𝐻)
9 uspgrun.vg . 2 𝑉 = (Vtx‘𝐺)
10 uspgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
11 uspgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
123, 6, 7, 8, 9, 10, 11upgrunop 26906 1 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cun 3936  cin 3937  c0 4293  cop 4575  dom cdm 5557  cfv 6357  Vtxcvtx 26783  iEdgciedg 26784  UPGraphcupgr 26867  USPGraphcuspgr 26935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fv 6365  df-1st 7691  df-2nd 7692  df-vtx 26785  df-iedg 26786  df-upgr 26869  df-uspgr 26937
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator