MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrun Structured version   Visualization version   GIF version

Theorem upgrun 29052
Description: The union 𝑈 of two pseudographs 𝐺 and 𝐻 with the same vertex set 𝑉 is a pseudograph with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
upgrun.g (𝜑𝐺 ∈ UPGraph)
upgrun.h (𝜑𝐻 ∈ UPGraph)
upgrun.e 𝐸 = (iEdg‘𝐺)
upgrun.f 𝐹 = (iEdg‘𝐻)
upgrun.vg 𝑉 = (Vtx‘𝐺)
upgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
upgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
upgrun.u (𝜑𝑈𝑊)
upgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
upgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
upgrun (𝜑𝑈 ∈ UPGraph)

Proof of Theorem upgrun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 upgrun.g . . . . 5 (𝜑𝐺 ∈ UPGraph)
2 upgrun.vg . . . . . 6 𝑉 = (Vtx‘𝐺)
3 upgrun.e . . . . . 6 𝐸 = (iEdg‘𝐺)
42, 3upgrf 29020 . . . . 5 (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
51, 4syl 17 . . . 4 (𝜑𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
6 upgrun.h . . . . . 6 (𝜑𝐻 ∈ UPGraph)
7 eqid 2730 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
8 upgrun.f . . . . . . 7 𝐹 = (iEdg‘𝐻)
97, 8upgrf 29020 . . . . . 6 (𝐻 ∈ UPGraph → 𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
106, 9syl 17 . . . . 5 (𝜑𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
11 upgrun.vh . . . . . . . . . 10 (𝜑 → (Vtx‘𝐻) = 𝑉)
1211eqcomd 2736 . . . . . . . . 9 (𝜑𝑉 = (Vtx‘𝐻))
1312pweqd 4583 . . . . . . . 8 (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻))
1413difeq1d 4091 . . . . . . 7 (𝜑 → (𝒫 𝑉 ∖ {∅}) = (𝒫 (Vtx‘𝐻) ∖ {∅}))
1514rabeqdv 3424 . . . . . 6 (𝜑 → {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1615feq3d 6676 . . . . 5 (𝜑 → (𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ 𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1710, 16mpbird 257 . . . 4 (𝜑𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
18 upgrun.i . . . 4 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
195, 17, 18fun2d 6727 . . 3 (𝜑 → (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
20 upgrun.un . . . 4 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
2120dmeqd 5872 . . . . 5 (𝜑 → dom (iEdg‘𝑈) = dom (𝐸𝐹))
22 dmun 5877 . . . . 5 dom (𝐸𝐹) = (dom 𝐸 ∪ dom 𝐹)
2321, 22eqtrdi 2781 . . . 4 (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹))
24 upgrun.v . . . . . . 7 (𝜑 → (Vtx‘𝑈) = 𝑉)
2524pweqd 4583 . . . . . 6 (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉)
2625difeq1d 4091 . . . . 5 (𝜑 → (𝒫 (Vtx‘𝑈) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
2726rabeqdv 3424 . . . 4 (𝜑 → {𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2820, 23, 27feq123d 6680 . . 3 (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2919, 28mpbird 257 . 2 (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
30 upgrun.u . . 3 (𝜑𝑈𝑊)
31 eqid 2730 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
32 eqid 2730 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
3331, 32isupgr 29018 . . 3 (𝑈𝑊 → (𝑈 ∈ UPGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3430, 33syl 17 . 2 (𝜑 → (𝑈 ∈ UPGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3529, 34mpbird 257 1 (𝜑𝑈 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {crab 3408  cdif 3914  cun 3915  cin 3916  c0 4299  𝒫 cpw 4566  {csn 4592   class class class wbr 5110  dom cdm 5641  wf 6510  cfv 6514  cle 11216  2c2 12248  chash 14302  Vtxcvtx 28930  iEdgciedg 28931  UPGraphcupgr 29014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-upgr 29016
This theorem is referenced by:  upgrunop  29053  uspgrun  29122
  Copyright terms: Public domain W3C validator