MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrun Structured version   Visualization version   GIF version

Theorem upgrun 26911
Description: The union 𝑈 of two pseudographs 𝐺 and 𝐻 with the same vertex set 𝑉 is a pseudograph with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
upgrun.g (𝜑𝐺 ∈ UPGraph)
upgrun.h (𝜑𝐻 ∈ UPGraph)
upgrun.e 𝐸 = (iEdg‘𝐺)
upgrun.f 𝐹 = (iEdg‘𝐻)
upgrun.vg 𝑉 = (Vtx‘𝐺)
upgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
upgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
upgrun.u (𝜑𝑈𝑊)
upgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
upgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
upgrun (𝜑𝑈 ∈ UPGraph)

Proof of Theorem upgrun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 upgrun.g . . . . 5 (𝜑𝐺 ∈ UPGraph)
2 upgrun.vg . . . . . 6 𝑉 = (Vtx‘𝐺)
3 upgrun.e . . . . . 6 𝐸 = (iEdg‘𝐺)
42, 3upgrf 26879 . . . . 5 (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
51, 4syl 17 . . . 4 (𝜑𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
6 upgrun.h . . . . . 6 (𝜑𝐻 ∈ UPGraph)
7 eqid 2798 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
8 upgrun.f . . . . . . 7 𝐹 = (iEdg‘𝐻)
97, 8upgrf 26879 . . . . . 6 (𝐻 ∈ UPGraph → 𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
106, 9syl 17 . . . . 5 (𝜑𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
11 upgrun.vh . . . . . . . . . 10 (𝜑 → (Vtx‘𝐻) = 𝑉)
1211eqcomd 2804 . . . . . . . . 9 (𝜑𝑉 = (Vtx‘𝐻))
1312pweqd 4516 . . . . . . . 8 (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻))
1413difeq1d 4049 . . . . . . 7 (𝜑 → (𝒫 𝑉 ∖ {∅}) = (𝒫 (Vtx‘𝐻) ∖ {∅}))
1514rabeqdv 3432 . . . . . 6 (𝜑 → {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1615feq3d 6474 . . . . 5 (𝜑 → (𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ 𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1710, 16mpbird 260 . . . 4 (𝜑𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
18 upgrun.i . . . 4 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
195, 17, 18fun2d 6516 . . 3 (𝜑 → (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
20 upgrun.un . . . 4 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
2120dmeqd 5738 . . . . 5 (𝜑 → dom (iEdg‘𝑈) = dom (𝐸𝐹))
22 dmun 5743 . . . . 5 dom (𝐸𝐹) = (dom 𝐸 ∪ dom 𝐹)
2321, 22eqtrdi 2849 . . . 4 (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹))
24 upgrun.v . . . . . . 7 (𝜑 → (Vtx‘𝑈) = 𝑉)
2524pweqd 4516 . . . . . 6 (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉)
2625difeq1d 4049 . . . . 5 (𝜑 → (𝒫 (Vtx‘𝑈) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
2726rabeqdv 3432 . . . 4 (𝜑 → {𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2820, 23, 27feq123d 6476 . . 3 (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2919, 28mpbird 260 . 2 (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
30 upgrun.u . . 3 (𝜑𝑈𝑊)
31 eqid 2798 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
32 eqid 2798 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
3331, 32isupgr 26877 . . 3 (𝑈𝑊 → (𝑈 ∈ UPGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3430, 33syl 17 . 2 (𝜑 → (𝑈 ∈ UPGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3529, 34mpbird 260 1 (𝜑𝑈 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  {crab 3110  cdif 3878  cun 3879  cin 3880  c0 4243  𝒫 cpw 4497  {csn 4525   class class class wbr 5030  dom cdm 5519  wf 6320  cfv 6324  cle 10665  2c2 11680  chash 13686  Vtxcvtx 26789  iEdgciedg 26790  UPGraphcupgr 26873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-upgr 26875
This theorem is referenced by:  upgrunop  26912  uspgrun  26978
  Copyright terms: Public domain W3C validator