MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrun Structured version   Visualization version   GIF version

Theorem upgrun 27391
Description: The union 𝑈 of two pseudographs 𝐺 and 𝐻 with the same vertex set 𝑉 is a pseudograph with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
upgrun.g (𝜑𝐺 ∈ UPGraph)
upgrun.h (𝜑𝐻 ∈ UPGraph)
upgrun.e 𝐸 = (iEdg‘𝐺)
upgrun.f 𝐹 = (iEdg‘𝐻)
upgrun.vg 𝑉 = (Vtx‘𝐺)
upgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
upgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
upgrun.u (𝜑𝑈𝑊)
upgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
upgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
upgrun (𝜑𝑈 ∈ UPGraph)

Proof of Theorem upgrun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 upgrun.g . . . . 5 (𝜑𝐺 ∈ UPGraph)
2 upgrun.vg . . . . . 6 𝑉 = (Vtx‘𝐺)
3 upgrun.e . . . . . 6 𝐸 = (iEdg‘𝐺)
42, 3upgrf 27359 . . . . 5 (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
51, 4syl 17 . . . 4 (𝜑𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
6 upgrun.h . . . . . 6 (𝜑𝐻 ∈ UPGraph)
7 eqid 2738 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
8 upgrun.f . . . . . . 7 𝐹 = (iEdg‘𝐻)
97, 8upgrf 27359 . . . . . 6 (𝐻 ∈ UPGraph → 𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
106, 9syl 17 . . . . 5 (𝜑𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
11 upgrun.vh . . . . . . . . . 10 (𝜑 → (Vtx‘𝐻) = 𝑉)
1211eqcomd 2744 . . . . . . . . 9 (𝜑𝑉 = (Vtx‘𝐻))
1312pweqd 4549 . . . . . . . 8 (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻))
1413difeq1d 4052 . . . . . . 7 (𝜑 → (𝒫 𝑉 ∖ {∅}) = (𝒫 (Vtx‘𝐻) ∖ {∅}))
1514rabeqdv 3409 . . . . . 6 (𝜑 → {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1615feq3d 6571 . . . . 5 (𝜑 → (𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ 𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1710, 16mpbird 256 . . . 4 (𝜑𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
18 upgrun.i . . . 4 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
195, 17, 18fun2d 6622 . . 3 (𝜑 → (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
20 upgrun.un . . . 4 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
2120dmeqd 5803 . . . . 5 (𝜑 → dom (iEdg‘𝑈) = dom (𝐸𝐹))
22 dmun 5808 . . . . 5 dom (𝐸𝐹) = (dom 𝐸 ∪ dom 𝐹)
2321, 22eqtrdi 2795 . . . 4 (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹))
24 upgrun.v . . . . . . 7 (𝜑 → (Vtx‘𝑈) = 𝑉)
2524pweqd 4549 . . . . . 6 (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉)
2625difeq1d 4052 . . . . 5 (𝜑 → (𝒫 (Vtx‘𝑈) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
2726rabeqdv 3409 . . . 4 (𝜑 → {𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2820, 23, 27feq123d 6573 . . 3 (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2919, 28mpbird 256 . 2 (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
30 upgrun.u . . 3 (𝜑𝑈𝑊)
31 eqid 2738 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
32 eqid 2738 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
3331, 32isupgr 27357 . . 3 (𝑈𝑊 → (𝑈 ∈ UPGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3430, 33syl 17 . 2 (𝜑 → (𝑈 ∈ UPGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3529, 34mpbird 256 1 (𝜑𝑈 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  {crab 3067  cdif 3880  cun 3881  cin 3882  c0 4253  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  dom cdm 5580  wf 6414  cfv 6418  cle 10941  2c2 11958  chash 13972  Vtxcvtx 27269  iEdgciedg 27270  UPGraphcupgr 27353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-upgr 27355
This theorem is referenced by:  upgrunop  27392  uspgrun  27458
  Copyright terms: Public domain W3C validator