MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrun Structured version   Visualization version   GIF version

Theorem upgrun 29097
Description: The union 𝑈 of two pseudographs 𝐺 and 𝐻 with the same vertex set 𝑉 is a pseudograph with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
upgrun.g (𝜑𝐺 ∈ UPGraph)
upgrun.h (𝜑𝐻 ∈ UPGraph)
upgrun.e 𝐸 = (iEdg‘𝐺)
upgrun.f 𝐹 = (iEdg‘𝐻)
upgrun.vg 𝑉 = (Vtx‘𝐺)
upgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
upgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
upgrun.u (𝜑𝑈𝑊)
upgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
upgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
upgrun (𝜑𝑈 ∈ UPGraph)

Proof of Theorem upgrun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 upgrun.g . . . . 5 (𝜑𝐺 ∈ UPGraph)
2 upgrun.vg . . . . . 6 𝑉 = (Vtx‘𝐺)
3 upgrun.e . . . . . 6 𝐸 = (iEdg‘𝐺)
42, 3upgrf 29065 . . . . 5 (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
51, 4syl 17 . . . 4 (𝜑𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
6 upgrun.h . . . . . 6 (𝜑𝐻 ∈ UPGraph)
7 eqid 2735 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
8 upgrun.f . . . . . . 7 𝐹 = (iEdg‘𝐻)
97, 8upgrf 29065 . . . . . 6 (𝐻 ∈ UPGraph → 𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
106, 9syl 17 . . . . 5 (𝜑𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
11 upgrun.vh . . . . . . . . . 10 (𝜑 → (Vtx‘𝐻) = 𝑉)
1211eqcomd 2741 . . . . . . . . 9 (𝜑𝑉 = (Vtx‘𝐻))
1312pweqd 4592 . . . . . . . 8 (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻))
1413difeq1d 4100 . . . . . . 7 (𝜑 → (𝒫 𝑉 ∖ {∅}) = (𝒫 (Vtx‘𝐻) ∖ {∅}))
1514rabeqdv 3431 . . . . . 6 (𝜑 → {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1615feq3d 6693 . . . . 5 (𝜑 → (𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ 𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1710, 16mpbird 257 . . . 4 (𝜑𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
18 upgrun.i . . . 4 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
195, 17, 18fun2d 6742 . . 3 (𝜑 → (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
20 upgrun.un . . . 4 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
2120dmeqd 5885 . . . . 5 (𝜑 → dom (iEdg‘𝑈) = dom (𝐸𝐹))
22 dmun 5890 . . . . 5 dom (𝐸𝐹) = (dom 𝐸 ∪ dom 𝐹)
2321, 22eqtrdi 2786 . . . 4 (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹))
24 upgrun.v . . . . . . 7 (𝜑 → (Vtx‘𝑈) = 𝑉)
2524pweqd 4592 . . . . . 6 (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉)
2625difeq1d 4100 . . . . 5 (𝜑 → (𝒫 (Vtx‘𝑈) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
2726rabeqdv 3431 . . . 4 (𝜑 → {𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2820, 23, 27feq123d 6695 . . 3 (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2919, 28mpbird 257 . 2 (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
30 upgrun.u . . 3 (𝜑𝑈𝑊)
31 eqid 2735 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
32 eqid 2735 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
3331, 32isupgr 29063 . . 3 (𝑈𝑊 → (𝑈 ∈ UPGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3430, 33syl 17 . 2 (𝜑 → (𝑈 ∈ UPGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3529, 34mpbird 257 1 (𝜑𝑈 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  {crab 3415  cdif 3923  cun 3924  cin 3925  c0 4308  𝒫 cpw 4575  {csn 4601   class class class wbr 5119  dom cdm 5654  wf 6527  cfv 6531  cle 11270  2c2 12295  chash 14348  Vtxcvtx 28975  iEdgciedg 28976  UPGraphcupgr 29059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-upgr 29061
This theorem is referenced by:  upgrunop  29098  uspgrun  29167
  Copyright terms: Public domain W3C validator