Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uspgrupgr | Structured version Visualization version GIF version |
Description: A simple pseudograph is an undirected pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 15-Oct-2020.) |
Ref | Expression |
---|---|
uspgrupgr | ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2739 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | isuspgr 27109 | . . . 4 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
4 | f1f 6584 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
5 | 3, 4 | syl6bi 256 | . . 3 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
6 | 1, 2 | isupgr 27041 | . . 3 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
7 | 5, 6 | sylibrd 262 | . 2 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)) |
8 | 7 | pm2.43i 52 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 {crab 3058 ∖ cdif 3850 ∅c0 4221 𝒫 cpw 4498 {csn 4526 class class class wbr 5040 dom cdm 5535 ⟶wf 6345 –1-1→wf1 6346 ‘cfv 6349 ≤ cle 10766 2c2 11783 ♯chash 13794 Vtxcvtx 26953 iEdgciedg 26954 UPGraphcupgr 27037 USPGraphcuspgr 27105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-nul 5184 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fv 6357 df-upgr 27039 df-uspgr 27107 |
This theorem is referenced by: uspgrupgrushgr 27134 usgrupgr 27139 uspgrun 27142 uspgrunop 27143 uspgredg2vtxeu 27174 1loopgrnb0 27456 uspgr2wlkeq 27599 uspgrn2crct 27758 wlkiswwlks2 27825 wlkiswwlks 27826 wlklnwwlkn 27834 clwlkclwwlk 27951 wlk2v2e 28106 isomuspgrlem1 44860 isomuspgrlem2b 44862 isomuspgrlem2c 44863 isomuspgrlem2d 44864 uspgropssxp 44887 uspgrsprf 44889 |
Copyright terms: Public domain | W3C validator |