| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgrupgr | Structured version Visualization version GIF version | ||
| Description: A simple pseudograph is an undirected pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 15-Oct-2020.) |
| Ref | Expression |
|---|---|
| uspgrupgr | ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 1, 2 | isuspgr 29131 | . . . 4 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 4 | f1f 6719 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
| 5 | 3, 4 | biimtrdi 253 | . . 3 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 6 | 1, 2 | isupgr 29063 | . . 3 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 7 | 5, 6 | sylibrd 259 | . 2 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)) |
| 8 | 7 | pm2.43i 52 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {crab 3395 ∖ cdif 3899 ∅c0 4283 𝒫 cpw 4550 {csn 4576 class class class wbr 5091 dom cdm 5616 ⟶wf 6477 –1-1→wf1 6478 ‘cfv 6481 ≤ cle 11147 2c2 12180 ♯chash 14237 Vtxcvtx 28975 iEdgciedg 28976 UPGraphcupgr 29059 USPGraphcuspgr 29127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fv 6489 df-upgr 29061 df-uspgr 29129 |
| This theorem is referenced by: uspgrupgrushgr 29158 uspgruhgr 29163 usgrupgr 29164 uspgrun 29167 uspgrunop 29168 uspgredg2vtxeu 29199 1loopgrnb0 29482 uspgr2wlkeq 29625 uspgrn2crct 29787 wlkiswwlks2 29854 wlkiswwlks 29855 wlklnwwlkn 29863 clwlkclwwlk 29980 wlk2v2e 30135 isuspgrim0 47931 isuspgrimlem 47932 upgrimwlklem5 47938 upgrimwlk 47939 grlimprclnbgr 48033 grlimprclnbgrvtx 48036 grlimgredgex 48037 uspgropssxp 48181 uspgrsprf 48183 |
| Copyright terms: Public domain | W3C validator |