![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrupgr | Structured version Visualization version GIF version |
Description: A simple pseudograph is an undirected pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 15-Oct-2020.) |
Ref | Expression |
---|---|
uspgrupgr | ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2740 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | isuspgr 29189 | . . . 4 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
4 | f1f 6819 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
5 | 3, 4 | biimtrdi 253 | . . 3 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
6 | 1, 2 | isupgr 29121 | . . 3 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
7 | 5, 6 | sylibrd 259 | . 2 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)) |
8 | 7 | pm2.43i 52 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {crab 3443 ∖ cdif 3973 ∅c0 4352 𝒫 cpw 4622 {csn 4648 class class class wbr 5166 dom cdm 5700 ⟶wf 6571 –1-1→wf1 6572 ‘cfv 6575 ≤ cle 11327 2c2 12350 ♯chash 14381 Vtxcvtx 29033 iEdgciedg 29034 UPGraphcupgr 29117 USPGraphcuspgr 29185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fv 6583 df-upgr 29119 df-uspgr 29187 |
This theorem is referenced by: uspgrupgrushgr 29216 uspgruhgr 29221 usgrupgr 29222 uspgrun 29225 uspgrunop 29226 uspgredg2vtxeu 29257 1loopgrnb0 29540 uspgr2wlkeq 29684 uspgrn2crct 29843 wlkiswwlks2 29910 wlkiswwlks 29911 wlklnwwlkn 29919 clwlkclwwlk 30036 wlk2v2e 30191 isuspgrim0 47758 isuspgrimlem 47760 uspgropssxp 47869 uspgrsprf 47871 |
Copyright terms: Public domain | W3C validator |