| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgrupgr | Structured version Visualization version GIF version | ||
| Description: A simple pseudograph is an undirected pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 15-Oct-2020.) |
| Ref | Expression |
|---|---|
| uspgrupgr | ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2733 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 1, 2 | isuspgr 29134 | . . . 4 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 4 | f1f 6726 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
| 5 | 3, 4 | biimtrdi 253 | . . 3 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 6 | 1, 2 | isupgr 29066 | . . 3 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 7 | 5, 6 | sylibrd 259 | . 2 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)) |
| 8 | 7 | pm2.43i 52 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 {crab 3396 ∖ cdif 3895 ∅c0 4282 𝒫 cpw 4551 {csn 4577 class class class wbr 5095 dom cdm 5621 ⟶wf 6484 –1-1→wf1 6485 ‘cfv 6488 ≤ cle 11156 2c2 12189 ♯chash 14241 Vtxcvtx 28978 iEdgciedg 28979 UPGraphcupgr 29062 USPGraphcuspgr 29130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fv 6496 df-upgr 29064 df-uspgr 29132 |
| This theorem is referenced by: uspgrupgrushgr 29161 uspgruhgr 29166 usgrupgr 29167 uspgrun 29170 uspgrunop 29171 uspgredg2vtxeu 29202 1loopgrnb0 29485 uspgr2wlkeq 29628 uspgrn2crct 29790 wlkiswwlks2 29857 wlkiswwlks 29858 wlklnwwlkn 29866 clwlkclwwlk 29986 wlk2v2e 30141 isuspgrim0 48021 isuspgrimlem 48022 upgrimwlklem5 48028 upgrimwlk 48029 grlimprclnbgr 48123 grlimprclnbgrvtx 48126 grlimgredgex 48127 uspgropssxp 48271 uspgrsprf 48273 |
| Copyright terms: Public domain | W3C validator |