Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrupgr Structured version   Visualization version   GIF version

Theorem uspgrupgr 26953
 Description: A simple pseudograph is an undirected pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 15-Oct-2020.)
Assertion
Ref Expression
uspgrupgr (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)

Proof of Theorem uspgrupgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2819 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2819 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2isuspgr 26929 . . . 4 (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
4 f1f 6568 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
53, 4syl6bi 255 . . 3 (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
61, 2isupgr 26861 . . 3 (𝐺 ∈ USPGraph → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
75, 6sylibrd 261 . 2 (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph))
87pm2.43i 52 1 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2107  {crab 3140   ∖ cdif 3931  ∅c0 4289  𝒫 cpw 4537  {csn 4559   class class class wbr 5057  dom cdm 5548  ⟶wf 6344  –1-1→wf1 6345  ‘cfv 6348   ≤ cle 10668  2c2 11684  ♯chash 13682  Vtxcvtx 26773  iEdgciedg 26774  UPGraphcupgr 26857  USPGraphcuspgr 26925 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-nul 5201 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fv 6356  df-upgr 26859  df-uspgr 26927 This theorem is referenced by:  uspgrupgrushgr  26954  usgrupgr  26959  uspgrun  26962  uspgrunop  26963  uspgredg2vtxeu  26994  1loopgrnb0  27276  uspgr2wlkeq  27419  uspgrn2crct  27578  wlkiswwlks2  27645  wlkiswwlks  27646  wlklnwwlkn  27654  clwlkclwwlk  27772  wlk2v2e  27928  isomuspgrlem1  43977  isomuspgrlem2b  43979  isomuspgrlem2c  43980  isomuspgrlem2d  43981  uspgropssxp  44004  uspgrsprf  44006
 Copyright terms: Public domain W3C validator