| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgrupgr | Structured version Visualization version GIF version | ||
| Description: A simple pseudograph is an undirected pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 15-Oct-2020.) |
| Ref | Expression |
|---|---|
| uspgrupgr | ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 1, 2 | isuspgr 29085 | . . . 4 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 4 | f1f 6758 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
| 5 | 3, 4 | biimtrdi 253 | . . 3 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 6 | 1, 2 | isupgr 29017 | . . 3 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 7 | 5, 6 | sylibrd 259 | . 2 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)) |
| 8 | 7 | pm2.43i 52 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3408 ∖ cdif 3913 ∅c0 4298 𝒫 cpw 4565 {csn 4591 class class class wbr 5109 dom cdm 5640 ⟶wf 6509 –1-1→wf1 6510 ‘cfv 6513 ≤ cle 11215 2c2 12242 ♯chash 14301 Vtxcvtx 28929 iEdgciedg 28930 UPGraphcupgr 29013 USPGraphcuspgr 29081 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5263 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fv 6521 df-upgr 29015 df-uspgr 29083 |
| This theorem is referenced by: uspgrupgrushgr 29112 uspgruhgr 29117 usgrupgr 29118 uspgrun 29121 uspgrunop 29122 uspgredg2vtxeu 29153 1loopgrnb0 29436 uspgr2wlkeq 29580 uspgrn2crct 29744 wlkiswwlks2 29811 wlkiswwlks 29812 wlklnwwlkn 29820 clwlkclwwlk 29937 wlk2v2e 30092 isuspgrim0 47884 isuspgrimlem 47885 upgrimwlklem5 47891 upgrimwlk 47892 uspgropssxp 48122 uspgrsprf 48124 |
| Copyright terms: Public domain | W3C validator |