Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uspgrushgr | Structured version Visualization version GIF version |
Description: A simple pseudograph is an undirected simple hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 15-Oct-2020.) |
Ref | Expression |
---|---|
uspgrushgr | ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2738 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | isuspgr 27522 | . . . 4 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
4 | ssrab2 4013 | . . . . 5 ⊢ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}) | |
5 | f1ss 6676 | . . . . 5 ⊢ (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})) | |
6 | 4, 5 | mpan2 688 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})) |
7 | 3, 6 | syl6bi 252 | . . 3 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
8 | 1, 2 | isushgr 27431 | . . 3 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
9 | 7, 8 | sylibrd 258 | . 2 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph)) |
10 | 9 | pm2.43i 52 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 {crab 3068 ∖ cdif 3884 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 class class class wbr 5074 dom cdm 5589 –1-1→wf1 6430 ‘cfv 6433 ≤ cle 11010 2c2 12028 ♯chash 14044 Vtxcvtx 27366 iEdgciedg 27367 USHGraphcushgr 27427 USPGraphcuspgr 27518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fv 6441 df-ushgr 27429 df-uspgr 27520 |
This theorem is referenced by: uspgrupgrushgr 27547 usgredgedg 27597 vtxdusgrfvedg 27858 1loopgrvd2 27870 isomuspgr 45286 |
Copyright terms: Public domain | W3C validator |