MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrushgr Structured version   Visualization version   GIF version

Theorem uspgrushgr 29156
Description: A simple pseudograph is an undirected simple hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 15-Oct-2020.)
Assertion
Ref Expression
uspgrushgr (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph)

Proof of Theorem uspgrushgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2731 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2isuspgr 29131 . . . 4 (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
4 ssrab2 4030 . . . . 5 {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})
5 f1ss 6724 . . . . 5 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))
64, 5mpan2 691 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))
73, 6biimtrdi 253 . . 3 (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})))
81, 2isushgr 29040 . . 3 (𝐺 ∈ USPGraph → (𝐺 ∈ USHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})))
97, 8sylibrd 259 . 2 (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph))
109pm2.43i 52 1 (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  {crab 3395  cdif 3899  wss 3902  c0 4283  𝒫 cpw 4550  {csn 4576   class class class wbr 5091  dom cdm 5616  1-1wf1 6478  cfv 6481  cle 11147  2c2 12180  chash 14237  Vtxcvtx 28975  iEdgciedg 28976  USHGraphcushgr 29036  USPGraphcuspgr 29127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fv 6489  df-ushgr 29038  df-uspgr 29129
This theorem is referenced by:  uspgrupgrushgr  29158  usgredgedg  29209  vtxdusgrfvedg  29471  1loopgrvd2  29483  isubgr3stgr  48012
  Copyright terms: Public domain W3C validator