| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgriedgedg | Structured version Visualization version GIF version | ||
| Description: In a simple pseudograph, for each indexed edge there is exactly one edge. (Contributed by AV, 20-Apr-2025.) |
| Ref | Expression |
|---|---|
| uspgredgiedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| uspgredgiedg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uspgriedgedg | ⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘 ∈ 𝐸 𝑘 = (𝐼‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgredgiedg.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | uspgrf1oedg 29162 | . . . . 5 ⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺)) |
| 3 | f1of 6771 | . . . . 5 ⊢ (𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺) → 𝐼:dom 𝐼⟶(Edg‘𝐺)) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼⟶(Edg‘𝐺)) |
| 5 | uspgredgiedg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 6 | feq3 6639 | . . . . 5 ⊢ (𝐸 = (Edg‘𝐺) → (𝐼:dom 𝐼⟶𝐸 ↔ 𝐼:dom 𝐼⟶(Edg‘𝐺))) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ (𝐼:dom 𝐼⟶𝐸 ↔ 𝐼:dom 𝐼⟶(Edg‘𝐺)) |
| 8 | 4, 7 | sylibr 234 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼⟶𝐸) |
| 9 | fdmeu 6887 | . . 3 ⊢ ((𝐼:dom 𝐼⟶𝐸 ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘 ∈ 𝐸 (𝐼‘𝑋) = 𝑘) | |
| 10 | 8, 9 | sylan 580 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘 ∈ 𝐸 (𝐼‘𝑋) = 𝑘) |
| 11 | eqcom 2740 | . . 3 ⊢ (𝑘 = (𝐼‘𝑋) ↔ (𝐼‘𝑋) = 𝑘) | |
| 12 | 11 | reubii 3357 | . 2 ⊢ (∃!𝑘 ∈ 𝐸 𝑘 = (𝐼‘𝑋) ↔ ∃!𝑘 ∈ 𝐸 (𝐼‘𝑋) = 𝑘) |
| 13 | 10, 12 | sylibr 234 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘 ∈ 𝐸 𝑘 = (𝐼‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃!wreu 3346 dom cdm 5621 ⟶wf 6485 –1-1-onto→wf1o 6488 ‘cfv 6489 iEdgciedg 28986 Edgcedg 29036 USPGraphcuspgr 29137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-edg 29037 df-uspgr 29139 |
| This theorem is referenced by: isuspgrim0 48008 |
| Copyright terms: Public domain | W3C validator |