![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgriedgedg | Structured version Visualization version GIF version |
Description: In a simple pseudograph, for each indexed edge there is exactly one edge. (Contributed by AV, 20-Apr-2025.) |
Ref | Expression |
---|---|
uspgredgiedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
uspgredgiedg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uspgriedgedg | ⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘 ∈ 𝐸 𝑘 = (𝐼‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgredgiedg.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | uspgrf1oedg 29208 | . . . . 5 ⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺)) |
3 | f1of 6862 | . . . . 5 ⊢ (𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺) → 𝐼:dom 𝐼⟶(Edg‘𝐺)) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼⟶(Edg‘𝐺)) |
5 | uspgredgiedg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | feq3 6730 | . . . . 5 ⊢ (𝐸 = (Edg‘𝐺) → (𝐼:dom 𝐼⟶𝐸 ↔ 𝐼:dom 𝐼⟶(Edg‘𝐺))) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ (𝐼:dom 𝐼⟶𝐸 ↔ 𝐼:dom 𝐼⟶(Edg‘𝐺)) |
8 | 4, 7 | sylibr 234 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼⟶𝐸) |
9 | fdmeu 6978 | . . 3 ⊢ ((𝐼:dom 𝐼⟶𝐸 ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘 ∈ 𝐸 (𝐼‘𝑋) = 𝑘) | |
10 | 8, 9 | sylan 579 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘 ∈ 𝐸 (𝐼‘𝑋) = 𝑘) |
11 | eqcom 2747 | . . 3 ⊢ (𝑘 = (𝐼‘𝑋) ↔ (𝐼‘𝑋) = 𝑘) | |
12 | 11 | reubii 3397 | . 2 ⊢ (∃!𝑘 ∈ 𝐸 𝑘 = (𝐼‘𝑋) ↔ ∃!𝑘 ∈ 𝐸 (𝐼‘𝑋) = 𝑘) |
13 | 10, 12 | sylibr 234 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘 ∈ 𝐸 𝑘 = (𝐼‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃!wreu 3386 dom cdm 5700 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 iEdgciedg 29032 Edgcedg 29082 USPGraphcuspgr 29183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-edg 29083 df-uspgr 29185 |
This theorem is referenced by: isuspgrim0 47756 |
Copyright terms: Public domain | W3C validator |