| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgriedgedg | Structured version Visualization version GIF version | ||
| Description: In a simple pseudograph, for each indexed edge there is exactly one edge. (Contributed by AV, 20-Apr-2025.) |
| Ref | Expression |
|---|---|
| uspgredgiedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| uspgredgiedg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uspgriedgedg | ⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘 ∈ 𝐸 𝑘 = (𝐼‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgredgiedg.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | uspgrf1oedg 29157 | . . . . 5 ⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺)) |
| 3 | f1of 6823 | . . . . 5 ⊢ (𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺) → 𝐼:dom 𝐼⟶(Edg‘𝐺)) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼⟶(Edg‘𝐺)) |
| 5 | uspgredgiedg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 6 | feq3 6693 | . . . . 5 ⊢ (𝐸 = (Edg‘𝐺) → (𝐼:dom 𝐼⟶𝐸 ↔ 𝐼:dom 𝐼⟶(Edg‘𝐺))) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ (𝐼:dom 𝐼⟶𝐸 ↔ 𝐼:dom 𝐼⟶(Edg‘𝐺)) |
| 8 | 4, 7 | sylibr 234 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼⟶𝐸) |
| 9 | fdmeu 6940 | . . 3 ⊢ ((𝐼:dom 𝐼⟶𝐸 ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘 ∈ 𝐸 (𝐼‘𝑋) = 𝑘) | |
| 10 | 8, 9 | sylan 580 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘 ∈ 𝐸 (𝐼‘𝑋) = 𝑘) |
| 11 | eqcom 2743 | . . 3 ⊢ (𝑘 = (𝐼‘𝑋) ↔ (𝐼‘𝑋) = 𝑘) | |
| 12 | 11 | reubii 3373 | . 2 ⊢ (∃!𝑘 ∈ 𝐸 𝑘 = (𝐼‘𝑋) ↔ ∃!𝑘 ∈ 𝐸 (𝐼‘𝑋) = 𝑘) |
| 13 | 10, 12 | sylibr 234 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘 ∈ 𝐸 𝑘 = (𝐼‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3362 dom cdm 5659 ⟶wf 6532 –1-1-onto→wf1o 6535 ‘cfv 6536 iEdgciedg 28981 Edgcedg 29031 USPGraphcuspgr 29132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-edg 29032 df-uspgr 29134 |
| This theorem is referenced by: isuspgrim0 47874 |
| Copyright terms: Public domain | W3C validator |