MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgriedgedg Structured version   Visualization version   GIF version

Theorem uspgriedgedg 29156
Description: In a simple pseudograph, for each indexed edge there is exactly one edge. (Contributed by AV, 20-Apr-2025.)
Hypotheses
Ref Expression
uspgredgiedg.e 𝐸 = (Edg‘𝐺)
uspgredgiedg.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
uspgriedgedg ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘𝐸 𝑘 = (𝐼𝑋))
Distinct variable groups:   𝑘,𝐸   𝑘,𝐼   𝑘,𝑋
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem uspgriedgedg
StepHypRef Expression
1 uspgredgiedg.i . . . . . 6 𝐼 = (iEdg‘𝐺)
21uspgrf1oedg 29153 . . . . 5 (𝐺 ∈ USPGraph → 𝐼:dom 𝐼1-1-onto→(Edg‘𝐺))
3 f1of 6782 . . . . 5 (𝐼:dom 𝐼1-1-onto→(Edg‘𝐺) → 𝐼:dom 𝐼⟶(Edg‘𝐺))
42, 3syl 17 . . . 4 (𝐺 ∈ USPGraph → 𝐼:dom 𝐼⟶(Edg‘𝐺))
5 uspgredgiedg.e . . . . 5 𝐸 = (Edg‘𝐺)
6 feq3 6650 . . . . 5 (𝐸 = (Edg‘𝐺) → (𝐼:dom 𝐼𝐸𝐼:dom 𝐼⟶(Edg‘𝐺)))
75, 6ax-mp 5 . . . 4 (𝐼:dom 𝐼𝐸𝐼:dom 𝐼⟶(Edg‘𝐺))
84, 7sylibr 234 . . 3 (𝐺 ∈ USPGraph → 𝐼:dom 𝐼𝐸)
9 fdmeu 6899 . . 3 ((𝐼:dom 𝐼𝐸𝑋 ∈ dom 𝐼) → ∃!𝑘𝐸 (𝐼𝑋) = 𝑘)
108, 9sylan 580 . 2 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘𝐸 (𝐼𝑋) = 𝑘)
11 eqcom 2736 . . 3 (𝑘 = (𝐼𝑋) ↔ (𝐼𝑋) = 𝑘)
1211reubii 3360 . 2 (∃!𝑘𝐸 𝑘 = (𝐼𝑋) ↔ ∃!𝑘𝐸 (𝐼𝑋) = 𝑘)
1310, 12sylibr 234 1 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘𝐸 𝑘 = (𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!wreu 3349  dom cdm 5631  wf 6495  1-1-ontowf1o 6498  cfv 6499  iEdgciedg 28977  Edgcedg 29027  USPGraphcuspgr 29128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-edg 29028  df-uspgr 29130
This theorem is referenced by:  isuspgrim0  47887
  Copyright terms: Public domain W3C validator