| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgriedgedg | Structured version Visualization version GIF version | ||
| Description: In a simple pseudograph, for each indexed edge there is exactly one edge. (Contributed by AV, 20-Apr-2025.) |
| Ref | Expression |
|---|---|
| uspgredgiedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| uspgredgiedg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uspgriedgedg | ⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘 ∈ 𝐸 𝑘 = (𝐼‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgredgiedg.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | uspgrf1oedg 29107 | . . . . 5 ⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺)) |
| 3 | f1of 6803 | . . . . 5 ⊢ (𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺) → 𝐼:dom 𝐼⟶(Edg‘𝐺)) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼⟶(Edg‘𝐺)) |
| 5 | uspgredgiedg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 6 | feq3 6671 | . . . . 5 ⊢ (𝐸 = (Edg‘𝐺) → (𝐼:dom 𝐼⟶𝐸 ↔ 𝐼:dom 𝐼⟶(Edg‘𝐺))) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ (𝐼:dom 𝐼⟶𝐸 ↔ 𝐼:dom 𝐼⟶(Edg‘𝐺)) |
| 8 | 4, 7 | sylibr 234 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼⟶𝐸) |
| 9 | fdmeu 6920 | . . 3 ⊢ ((𝐼:dom 𝐼⟶𝐸 ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘 ∈ 𝐸 (𝐼‘𝑋) = 𝑘) | |
| 10 | 8, 9 | sylan 580 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘 ∈ 𝐸 (𝐼‘𝑋) = 𝑘) |
| 11 | eqcom 2737 | . . 3 ⊢ (𝑘 = (𝐼‘𝑋) ↔ (𝐼‘𝑋) = 𝑘) | |
| 12 | 11 | reubii 3365 | . 2 ⊢ (∃!𝑘 ∈ 𝐸 𝑘 = (𝐼‘𝑋) ↔ ∃!𝑘 ∈ 𝐸 (𝐼‘𝑋) = 𝑘) |
| 13 | 10, 12 | sylibr 234 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘 ∈ 𝐸 𝑘 = (𝐼‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3354 dom cdm 5641 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 iEdgciedg 28931 Edgcedg 28981 USPGraphcuspgr 29082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-edg 28982 df-uspgr 29084 |
| This theorem is referenced by: isuspgrim0 47898 |
| Copyright terms: Public domain | W3C validator |