MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgriedgedg Structured version   Visualization version   GIF version

Theorem uspgriedgedg 29147
Description: In a simple pseudograph, for each indexed edge there is exactly one edge. (Contributed by AV, 20-Apr-2025.)
Hypotheses
Ref Expression
uspgredgiedg.e 𝐸 = (Edg‘𝐺)
uspgredgiedg.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
uspgriedgedg ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘𝐸 𝑘 = (𝐼𝑋))
Distinct variable groups:   𝑘,𝐸   𝑘,𝐼   𝑘,𝑋
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem uspgriedgedg
StepHypRef Expression
1 uspgredgiedg.i . . . . . 6 𝐼 = (iEdg‘𝐺)
21uspgrf1oedg 29144 . . . . 5 (𝐺 ∈ USPGraph → 𝐼:dom 𝐼1-1-onto→(Edg‘𝐺))
3 f1of 6759 . . . . 5 (𝐼:dom 𝐼1-1-onto→(Edg‘𝐺) → 𝐼:dom 𝐼⟶(Edg‘𝐺))
42, 3syl 17 . . . 4 (𝐺 ∈ USPGraph → 𝐼:dom 𝐼⟶(Edg‘𝐺))
5 uspgredgiedg.e . . . . 5 𝐸 = (Edg‘𝐺)
6 feq3 6627 . . . . 5 (𝐸 = (Edg‘𝐺) → (𝐼:dom 𝐼𝐸𝐼:dom 𝐼⟶(Edg‘𝐺)))
75, 6ax-mp 5 . . . 4 (𝐼:dom 𝐼𝐸𝐼:dom 𝐼⟶(Edg‘𝐺))
84, 7sylibr 234 . . 3 (𝐺 ∈ USPGraph → 𝐼:dom 𝐼𝐸)
9 fdmeu 6873 . . 3 ((𝐼:dom 𝐼𝐸𝑋 ∈ dom 𝐼) → ∃!𝑘𝐸 (𝐼𝑋) = 𝑘)
108, 9sylan 580 . 2 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘𝐸 (𝐼𝑋) = 𝑘)
11 eqcom 2737 . . 3 (𝑘 = (𝐼𝑋) ↔ (𝐼𝑋) = 𝑘)
1211reubii 3353 . 2 (∃!𝑘𝐸 𝑘 = (𝐼𝑋) ↔ ∃!𝑘𝐸 (𝐼𝑋) = 𝑘)
1310, 12sylibr 234 1 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼) → ∃!𝑘𝐸 𝑘 = (𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  ∃!wreu 3342  dom cdm 5614  wf 6473  1-1-ontowf1o 6476  cfv 6477  iEdgciedg 28968  Edgcedg 29018  USPGraphcuspgr 29119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-edg 29019  df-uspgr 29121
This theorem is referenced by:  isuspgrim0  47904
  Copyright terms: Public domain W3C validator