![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgredgedg | Structured version Visualization version GIF version |
Description: In a simple graph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by AV, 18-Oct-2020.) (Proof shortened by AV, 11-Dec-2020.) |
Ref | Expression |
---|---|
ushgredgedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
ushgredgedg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
ushgredgedg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
ushgredgedg.a | ⊢ 𝐴 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} |
ushgredgedg.b | ⊢ 𝐵 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} |
ushgredgedg.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐼‘𝑥)) |
Ref | Expression |
---|---|
usgredgedg | ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgruspgr 29037 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) | |
2 | uspgrushgr 29034 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USHGraph) |
4 | ushgredgedg.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
5 | ushgredgedg.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
6 | ushgredgedg.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | ushgredgedg.a | . . 3 ⊢ 𝐴 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} | |
8 | ushgredgedg.b | . . 3 ⊢ 𝐵 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} | |
9 | ushgredgedg.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐼‘𝑥)) | |
10 | 4, 5, 6, 7, 8, 9 | ushgredgedg 29086 | . 2 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) |
11 | 3, 10 | sylan 578 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3419 ↦ cmpt 5226 dom cdm 5672 –1-1-onto→wf1o 6542 ‘cfv 6543 Vtxcvtx 28853 iEdgciedg 28854 Edgcedg 28904 USHGraphcushgr 28914 USPGraphcuspgr 29005 USGraphcusgr 29006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-i2m1 11206 ax-1ne0 11207 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-2 12305 df-edg 28905 df-uhgr 28915 df-ushgr 28916 df-uspgr 29007 df-usgr 29008 |
This theorem is referenced by: usgredgleordALT 29091 |
Copyright terms: Public domain | W3C validator |