MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredgedg Structured version   Visualization version   GIF version

Theorem usgredgedg 29262
Description: In a simple graph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by AV, 18-Oct-2020.) (Proof shortened by AV, 11-Dec-2020.)
Hypotheses
Ref Expression
ushgredgedg.e 𝐸 = (Edg‘𝐺)
ushgredgedg.i 𝐼 = (iEdg‘𝐺)
ushgredgedg.v 𝑉 = (Vtx‘𝐺)
ushgredgedg.a 𝐴 = {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}
ushgredgedg.b 𝐵 = {𝑒𝐸𝑁𝑒}
ushgredgedg.f 𝐹 = (𝑥𝐴 ↦ (𝐼𝑥))
Assertion
Ref Expression
usgredgedg ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐵,𝑒   𝑒,𝐸,𝑖   𝑒,𝐺,𝑖,𝑥   𝑒,𝐼,𝑖,𝑥   𝑒,𝑁,𝑖,𝑥   𝑒,𝑉,𝑖,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑒,𝑖)   𝐵(𝑥,𝑖)   𝐸(𝑥)   𝐹(𝑥,𝑒,𝑖)

Proof of Theorem usgredgedg
StepHypRef Expression
1 usgruspgr 29212 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
2 uspgrushgr 29209 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph)
31, 2syl 17 . 2 (𝐺 ∈ USGraph → 𝐺 ∈ USHGraph)
4 ushgredgedg.e . . 3 𝐸 = (Edg‘𝐺)
5 ushgredgedg.i . . 3 𝐼 = (iEdg‘𝐺)
6 ushgredgedg.v . . 3 𝑉 = (Vtx‘𝐺)
7 ushgredgedg.a . . 3 𝐴 = {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}
8 ushgredgedg.b . . 3 𝐵 = {𝑒𝐸𝑁𝑒}
9 ushgredgedg.f . . 3 𝐹 = (𝑥𝐴 ↦ (𝐼𝑥))
104, 5, 6, 7, 8, 9ushgredgedg 29261 . 2 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1-onto𝐵)
113, 10sylan 580 1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433  cmpt 5231  dom cdm 5689  1-1-ontowf1o 6562  cfv 6563  Vtxcvtx 29028  iEdgciedg 29029  Edgcedg 29079  USHGraphcushgr 29089  USPGraphcuspgr 29180  USGraphcusgr 29181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-i2m1 11221  ax-1ne0 11222  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-2 12327  df-edg 29080  df-uhgr 29090  df-ushgr 29091  df-uspgr 29182  df-usgr 29183
This theorem is referenced by:  usgredgleordALT  29266
  Copyright terms: Public domain W3C validator