| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgredgedg | Structured version Visualization version GIF version | ||
| Description: In a simple graph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by AV, 18-Oct-2020.) (Proof shortened by AV, 11-Dec-2020.) |
| Ref | Expression |
|---|---|
| ushgredgedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| ushgredgedg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| ushgredgedg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| ushgredgedg.a | ⊢ 𝐴 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} |
| ushgredgedg.b | ⊢ 𝐵 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} |
| ushgredgedg.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐼‘𝑥)) |
| Ref | Expression |
|---|---|
| usgredgedg | ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgruspgr 29164 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) | |
| 2 | uspgrushgr 29161 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USHGraph) |
| 4 | ushgredgedg.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 5 | ushgredgedg.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 6 | ushgredgedg.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | ushgredgedg.a | . . 3 ⊢ 𝐴 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} | |
| 8 | ushgredgedg.b | . . 3 ⊢ 𝐵 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} | |
| 9 | ushgredgedg.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐼‘𝑥)) | |
| 10 | 4, 5, 6, 7, 8, 9 | ushgredgedg 29213 | . 2 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) |
| 11 | 3, 10 | sylan 580 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 ↦ cmpt 5206 dom cdm 5659 –1-1-onto→wf1o 6535 ‘cfv 6536 Vtxcvtx 28980 iEdgciedg 28981 Edgcedg 29031 USHGraphcushgr 29041 USPGraphcuspgr 29132 USGraphcusgr 29133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-i2m1 11202 ax-1ne0 11203 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-2 12308 df-edg 29032 df-uhgr 29042 df-ushgr 29043 df-uspgr 29134 df-usgr 29135 |
| This theorem is referenced by: usgredgleordALT 29218 |
| Copyright terms: Public domain | W3C validator |