MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsindsOLD Structured version   Visualization version   GIF version

Theorem omsindsOLD 7870
Description: Obsolete version of omsinds 7869 as of 16-Oct-2024. (Contributed by Scott Fenton, 17-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
omsinds.1 (𝑥 = 𝑦 → (𝜑𝜓))
omsinds.2 (𝑥 = 𝐴 → (𝜑𝜒))
omsinds.3 (𝑥 ∈ ω → (∀𝑦𝑥 𝜓𝜑))
Assertion
Ref Expression
omsindsOLD (𝐴 ∈ ω → 𝜒)
Distinct variable groups:   𝑥,𝐴   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem omsindsOLD
StepHypRef Expression
1 omsson 7852 . . 3 ω ⊆ On
2 epweon 7755 . . 3 E We On
3 wess 5653 . . 3 (ω ⊆ On → ( E We On → E We ω))
41, 2, 3mp2 9 . 2 E We ω
5 epse 5649 . 2 E Se ω
6 omsinds.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
7 omsinds.2 . 2 (𝑥 = 𝐴 → (𝜑𝜒))
8 predep 6321 . . . . 5 (𝑥 ∈ ω → Pred( E , ω, 𝑥) = (ω ∩ 𝑥))
9 ordom 7858 . . . . . . 7 Ord ω
10 ordtr 6368 . . . . . . 7 (Ord ω → Tr ω)
11 trss 5266 . . . . . . 7 (Tr ω → (𝑥 ∈ ω → 𝑥 ⊆ ω))
129, 10, 11mp2b 10 . . . . . 6 (𝑥 ∈ ω → 𝑥 ⊆ ω)
13 sseqin2 4207 . . . . . 6 (𝑥 ⊆ ω ↔ (ω ∩ 𝑥) = 𝑥)
1412, 13sylib 217 . . . . 5 (𝑥 ∈ ω → (ω ∩ 𝑥) = 𝑥)
158, 14eqtrd 2764 . . . 4 (𝑥 ∈ ω → Pred( E , ω, 𝑥) = 𝑥)
1615raleqdv 3317 . . 3 (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 ↔ ∀𝑦𝑥 𝜓))
17 omsinds.3 . . 3 (𝑥 ∈ ω → (∀𝑦𝑥 𝜓𝜑))
1816, 17sylbid 239 . 2 (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓𝜑))
194, 5, 6, 7, 18wfis3 6352 1 (𝐴 ∈ ω → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  wral 3053  cin 3939  wss 3940  Tr wtr 5255   E cep 5569   We wwe 5620  Predcpred 6289  Ord word 6353  Oncon0 6354  ωcom 7848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-tr 5256  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-om 7849
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator