![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omsindsOLD | Structured version Visualization version GIF version |
Description: Obsolete version of omsinds 7872 as of 16-Oct-2024. (Contributed by Scott Fenton, 17-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
omsinds.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
omsinds.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
omsinds.3 | ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
Ref | Expression |
---|---|
omsindsOLD | ⊢ (𝐴 ∈ ω → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omsson 7855 | . . 3 ⊢ ω ⊆ On | |
2 | epweon 7758 | . . 3 ⊢ E We On | |
3 | wess 5662 | . . 3 ⊢ (ω ⊆ On → ( E We On → E We ω)) | |
4 | 1, 2, 3 | mp2 9 | . 2 ⊢ E We ω |
5 | epse 5658 | . 2 ⊢ E Se ω | |
6 | omsinds.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
7 | omsinds.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
8 | predep 6328 | . . . . 5 ⊢ (𝑥 ∈ ω → Pred( E , ω, 𝑥) = (ω ∩ 𝑥)) | |
9 | ordom 7861 | . . . . . . 7 ⊢ Ord ω | |
10 | ordtr 6375 | . . . . . . 7 ⊢ (Ord ω → Tr ω) | |
11 | trss 5275 | . . . . . . 7 ⊢ (Tr ω → (𝑥 ∈ ω → 𝑥 ⊆ ω)) | |
12 | 9, 10, 11 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ ω → 𝑥 ⊆ ω) |
13 | sseqin2 4214 | . . . . . 6 ⊢ (𝑥 ⊆ ω ↔ (ω ∩ 𝑥) = 𝑥) | |
14 | 12, 13 | sylib 217 | . . . . 5 ⊢ (𝑥 ∈ ω → (ω ∩ 𝑥) = 𝑥) |
15 | 8, 14 | eqtrd 2772 | . . . 4 ⊢ (𝑥 ∈ ω → Pred( E , ω, 𝑥) = 𝑥) |
16 | 15 | raleqdv 3325 | . . 3 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 ↔ ∀𝑦 ∈ 𝑥 𝜓)) |
17 | omsinds.3 | . . 3 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
18 | 16, 17 | sylbid 239 | . 2 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 → 𝜑)) |
19 | 4, 5, 6, 7, 18 | wfis3 6359 | 1 ⊢ (𝐴 ∈ ω → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∩ cin 3946 ⊆ wss 3947 Tr wtr 5264 E cep 5578 We wwe 5629 Predcpred 6296 Ord word 6360 Oncon0 6361 ωcom 7851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-om 7852 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |