Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omsindsOLD | Structured version Visualization version GIF version |
Description: Obsolete version of omsinds 7708 as of 16-Oct-2024. (Contributed by Scott Fenton, 17-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
omsinds.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
omsinds.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
omsinds.3 | ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
Ref | Expression |
---|---|
omsindsOLD | ⊢ (𝐴 ∈ ω → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omsson 7691 | . . 3 ⊢ ω ⊆ On | |
2 | epweon 7603 | . . 3 ⊢ E We On | |
3 | wess 5567 | . . 3 ⊢ (ω ⊆ On → ( E We On → E We ω)) | |
4 | 1, 2, 3 | mp2 9 | . 2 ⊢ E We ω |
5 | epse 5563 | . 2 ⊢ E Se ω | |
6 | omsinds.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
7 | omsinds.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
8 | predep 6222 | . . . . 5 ⊢ (𝑥 ∈ ω → Pred( E , ω, 𝑥) = (ω ∩ 𝑥)) | |
9 | ordom 7697 | . . . . . . 7 ⊢ Ord ω | |
10 | ordtr 6265 | . . . . . . 7 ⊢ (Ord ω → Tr ω) | |
11 | trss 5196 | . . . . . . 7 ⊢ (Tr ω → (𝑥 ∈ ω → 𝑥 ⊆ ω)) | |
12 | 9, 10, 11 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ ω → 𝑥 ⊆ ω) |
13 | sseqin2 4146 | . . . . . 6 ⊢ (𝑥 ⊆ ω ↔ (ω ∩ 𝑥) = 𝑥) | |
14 | 12, 13 | sylib 217 | . . . . 5 ⊢ (𝑥 ∈ ω → (ω ∩ 𝑥) = 𝑥) |
15 | 8, 14 | eqtrd 2778 | . . . 4 ⊢ (𝑥 ∈ ω → Pred( E , ω, 𝑥) = 𝑥) |
16 | 15 | raleqdv 3339 | . . 3 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 ↔ ∀𝑦 ∈ 𝑥 𝜓)) |
17 | omsinds.3 | . . 3 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
18 | 16, 17 | sylbid 239 | . 2 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 → 𝜑)) |
19 | 4, 5, 6, 7, 18 | wfis3 6249 | 1 ⊢ (𝐴 ∈ ω → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 ⊆ wss 3883 Tr wtr 5187 E cep 5485 We wwe 5534 Predcpred 6190 Ord word 6250 Oncon0 6251 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-om 7688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |