MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem8 Structured version   Visualization version   GIF version

Theorem wfrlem8 7661
Description: Lemma for well-founded recursion. Compute the prececessor class for an 𝑅 minimal element of (𝐴 ∖ dom 𝐹). (Contributed by Scott Fenton, 21-Apr-2011.)
Hypothesis
Ref Expression
wfrlem6.1 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrlem8 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, dom 𝐹, 𝑋))

Proof of Theorem wfrlem8
StepHypRef Expression
1 wfrlem6.1 . . . . 5 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
21wfrdmss 7660 . . . 4 dom 𝐹𝐴
3 predpredss 5904 . . . 4 (dom 𝐹𝐴 → Pred(𝑅, dom 𝐹, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋))
42, 3ax-mp 5 . . 3 Pred(𝑅, dom 𝐹, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋)
54biantru 526 . 2 (Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋) ↔ (Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋) ∧ Pred(𝑅, dom 𝐹, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋)))
6 preddif 5923 . . . 4 Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, dom 𝐹, 𝑋))
76eqeq1i 2804 . . 3 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, dom 𝐹, 𝑋)) = ∅)
8 ssdif0 4142 . . 3 (Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋) ↔ (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, dom 𝐹, 𝑋)) = ∅)
97, 8bitr4i 270 . 2 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋))
10 eqss 3813 . 2 (Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, dom 𝐹, 𝑋) ↔ (Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋) ∧ Pred(𝑅, dom 𝐹, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋)))
115, 9, 103bitr4i 295 1 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, dom 𝐹, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 385   = wceq 1653  cdif 3766  wss 3769  c0 4115  dom cdm 5312  Predcpred 5897  wrecscwrecs 7644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-iota 6064  df-fun 6103  df-fn 6104  df-fv 6109  df-wrecs 7645
This theorem is referenced by:  wfrlem10  7663
  Copyright terms: Public domain W3C validator