MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem8 Structured version   Visualization version   GIF version

Theorem wfrlem8 7945
Description: Lemma for well-founded recursion. Compute the prececessor class for an 𝑅 minimal element of (𝐴 ∖ dom 𝐹). (Contributed by Scott Fenton, 21-Apr-2011.)
Hypothesis
Ref Expression
wfrlem6.1 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrlem8 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, dom 𝐹, 𝑋))

Proof of Theorem wfrlem8
StepHypRef Expression
1 wfrlem6.1 . . . . 5 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
21wfrdmss 7944 . . . 4 dom 𝐹𝐴
3 predpredss 6122 . . . 4 (dom 𝐹𝐴 → Pred(𝑅, dom 𝐹, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋))
42, 3ax-mp 5 . . 3 Pred(𝑅, dom 𝐹, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋)
54biantru 533 . 2 (Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋) ↔ (Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋) ∧ Pred(𝑅, dom 𝐹, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋)))
6 preddif 6141 . . . 4 Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, dom 𝐹, 𝑋))
76eqeq1i 2803 . . 3 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, dom 𝐹, 𝑋)) = ∅)
8 ssdif0 4277 . . 3 (Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋) ↔ (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, dom 𝐹, 𝑋)) = ∅)
97, 8bitr4i 281 . 2 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋))
10 eqss 3930 . 2 (Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, dom 𝐹, 𝑋) ↔ (Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋) ∧ Pred(𝑅, dom 𝐹, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋)))
115, 9, 103bitr4i 306 1 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, dom 𝐹, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  cdif 3878  wss 3881  c0 4243  dom cdm 5519  Predcpred 6115  wrecscwrecs 7929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332  df-wrecs 7930
This theorem is referenced by:  wfrlem10  7947
  Copyright terms: Public domain W3C validator