MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordgt0ge1 Structured version   Visualization version   GIF version

Theorem ordgt0ge1 8532
Description: Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
ordgt0ge1 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))

Proof of Theorem ordgt0ge1
StepHypRef Expression
1 0elon 6437 . . 3 ∅ ∈ On
2 ordelsuc 7841 . . 3 ((∅ ∈ On ∧ Ord 𝐴) → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴))
31, 2mpan 690 . 2 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴))
4 df-1o 8507 . . 3 1o = suc ∅
54sseq1i 4011 . 2 (1o𝐴 ↔ suc ∅ ⊆ 𝐴)
63, 5bitr4di 289 1 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2107  wss 3950  c0 4332  Ord word 6382  Oncon0 6383  suc csuc 6385  1oc1o 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-tr 5259  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-ord 6386  df-on 6387  df-suc 6389  df-1o 8507
This theorem is referenced by:  ordge1n0  8533  oe0m1  8560  omword1  8612  omword2  8613  omlimcl  8617  oen0  8625  oewordi  8630  oe0rif  43303
  Copyright terms: Public domain W3C validator