| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordgt0ge1 | Structured version Visualization version GIF version | ||
| Description: Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.) |
| Ref | Expression |
|---|---|
| ordgt0ge1 | ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6412 | . . 3 ⊢ ∅ ∈ On | |
| 2 | ordelsuc 7819 | . . 3 ⊢ ((∅ ∈ On ∧ Ord 𝐴) → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴)) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴)) |
| 4 | df-1o 8485 | . . 3 ⊢ 1o = suc ∅ | |
| 5 | 4 | sseq1i 3992 | . 2 ⊢ (1o ⊆ 𝐴 ↔ suc ∅ ⊆ 𝐴) |
| 6 | 3, 5 | bitr4di 289 | 1 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ⊆ wss 3931 ∅c0 4313 Ord word 6356 Oncon0 6357 suc csuc 6359 1oc1o 8478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-suc 6363 df-1o 8485 |
| This theorem is referenced by: ordge1n0 8511 oe0m1 8538 omword1 8590 omword2 8591 omlimcl 8595 oen0 8603 oewordi 8608 oe0rif 43276 |
| Copyright terms: Public domain | W3C validator |