Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordgt0ge1 | Structured version Visualization version GIF version |
Description: Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.) |
Ref | Expression |
---|---|
ordgt0ge1 | ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6341 | . . 3 ⊢ ∅ ∈ On | |
2 | ordelsuc 7711 | . . 3 ⊢ ((∅ ∈ On ∧ Ord 𝐴) → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴)) | |
3 | 1, 2 | mpan 687 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴)) |
4 | df-1o 8345 | . . 3 ⊢ 1o = suc ∅ | |
5 | 4 | sseq1i 3958 | . 2 ⊢ (1o ⊆ 𝐴 ↔ suc ∅ ⊆ 𝐴) |
6 | 3, 5 | bitr4di 288 | 1 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2105 ⊆ wss 3896 ∅c0 4266 Ord word 6287 Oncon0 6288 suc csuc 6290 1oc1o 8338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-tr 5204 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-ord 6291 df-on 6292 df-suc 6294 df-1o 8345 |
This theorem is referenced by: ordge1n0 8373 oe0m1 8400 omword1 8453 omword2 8454 omlimcl 8458 oen0 8466 oewordi 8471 |
Copyright terms: Public domain | W3C validator |