| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordgt0ge1 | Structured version Visualization version GIF version | ||
| Description: Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.) |
| Ref | Expression |
|---|---|
| ordgt0ge1 | ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6361 | . . 3 ⊢ ∅ ∈ On | |
| 2 | ordelsuc 7750 | . . 3 ⊢ ((∅ ∈ On ∧ Ord 𝐴) → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴)) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴)) |
| 4 | df-1o 8385 | . . 3 ⊢ 1o = suc ∅ | |
| 5 | 4 | sseq1i 3958 | . 2 ⊢ (1o ⊆ 𝐴 ↔ suc ∅ ⊆ 𝐴) |
| 6 | 3, 5 | bitr4di 289 | 1 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 ⊆ wss 3897 ∅c0 4280 Ord word 6305 Oncon0 6306 suc csuc 6308 1oc1o 8378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-suc 6312 df-1o 8385 |
| This theorem is referenced by: ordge1n0 8409 oe0m1 8436 omword1 8488 omword2 8489 omlimcl 8493 oen0 8501 oewordi 8506 oe0rif 43388 |
| Copyright terms: Public domain | W3C validator |