MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordgt0ge1 Structured version   Visualization version   GIF version

Theorem ordgt0ge1 8434
Description: Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
ordgt0ge1 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))

Proof of Theorem ordgt0ge1
StepHypRef Expression
1 0elon 6375 . . 3 ∅ ∈ On
2 ordelsuc 7775 . . 3 ((∅ ∈ On ∧ Ord 𝐴) → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴))
31, 2mpan 690 . 2 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴))
4 df-1o 8411 . . 3 1o = suc ∅
54sseq1i 3972 . 2 (1o𝐴 ↔ suc ∅ ⊆ 𝐴)
63, 5bitr4di 289 1 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wss 3911  c0 4292  Ord word 6319  Oncon0 6320  suc csuc 6322  1oc1o 8404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-suc 6326  df-1o 8411
This theorem is referenced by:  ordge1n0  8435  oe0m1  8462  omword1  8514  omword2  8515  omlimcl  8519  oen0  8527  oewordi  8532  oe0rif  43267
  Copyright terms: Public domain W3C validator