| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordgt0ge1 | Structured version Visualization version GIF version | ||
| Description: Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.) |
| Ref | Expression |
|---|---|
| ordgt0ge1 | ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6437 | . . 3 ⊢ ∅ ∈ On | |
| 2 | ordelsuc 7841 | . . 3 ⊢ ((∅ ∈ On ∧ Ord 𝐴) → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴)) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴)) |
| 4 | df-1o 8507 | . . 3 ⊢ 1o = suc ∅ | |
| 5 | 4 | sseq1i 4011 | . 2 ⊢ (1o ⊆ 𝐴 ↔ suc ∅ ⊆ 𝐴) |
| 6 | 3, 5 | bitr4di 289 | 1 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 ⊆ wss 3950 ∅c0 4332 Ord word 6382 Oncon0 6383 suc csuc 6385 1oc1o 8500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-tr 5259 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-ord 6386 df-on 6387 df-suc 6389 df-1o 8507 |
| This theorem is referenced by: ordge1n0 8533 oe0m1 8560 omword1 8612 omword2 8613 omlimcl 8617 oen0 8625 oewordi 8630 oe0rif 43303 |
| Copyright terms: Public domain | W3C validator |