MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argimgt0 Structured version   Visualization version   GIF version

Theorem argimgt0 24478
Description: Closure of the argument of a complex number with positive imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
argimgt0 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))

Proof of Theorem argimgt0
StepHypRef Expression
1 imcl 13971 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
2 gt0ne0 10606 . . . . . 6 (((ℑ‘𝐴) ∈ ℝ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
31, 2sylan 489 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
4 fveq2 6304 . . . . . . 7 (𝐴 = 0 → (ℑ‘𝐴) = (ℑ‘0))
5 im0 14013 . . . . . . 7 (ℑ‘0) = 0
64, 5syl6eq 2774 . . . . . 6 (𝐴 = 0 → (ℑ‘𝐴) = 0)
76necon3i 2928 . . . . 5 ((ℑ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
83, 7syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 𝐴 ≠ 0)
9 logcl 24435 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
108, 9syldan 488 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘𝐴) ∈ ℂ)
1110imcld 14055 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
12 simpr 479 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘𝐴))
13 abscl 14138 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1413adantr 472 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ∈ ℝ)
1514recnd 10181 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ∈ ℂ)
1615mul01d 10348 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · 0) = 0)
17 simpl 474 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 𝐴 ∈ ℂ)
18 absrpcl 14148 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
198, 18syldan 488 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ∈ ℝ+)
2019rpne0d 11991 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ≠ 0)
2117, 15, 20divcld 10914 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (𝐴 / (abs‘𝐴)) ∈ ℂ)
2214, 21immul2d 14088 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴)))))
2317, 15, 20divcan2d 10916 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · (𝐴 / (abs‘𝐴))) = 𝐴)
2423fveq2d 6308 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = (ℑ‘𝐴))
2522, 24eqtr3d 2760 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴)))) = (ℑ‘𝐴))
2612, 16, 253brtr4d 4792 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴)))))
27 0re 10153 . . . . . . . . 9 0 ∈ ℝ
2827a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 ∈ ℝ)
2921imcld 14055 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴 / (abs‘𝐴))) ∈ ℝ)
3028, 29, 19ltmul2d 12028 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(𝐴 / (abs‘𝐴))) ↔ ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴))))))
3126, 30mpbird 247 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(𝐴 / (abs‘𝐴))))
32 efiarg 24473 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
338, 32syldan 488 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
3433fveq2d 6308 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))) = (ℑ‘(𝐴 / (abs‘𝐴))))
3531, 34breqtrrd 4788 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
36 resinval 14985 . . . . . 6 ((ℑ‘(log‘𝐴)) ∈ ℝ → (sin‘(ℑ‘(log‘𝐴))) = (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3711, 36syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (sin‘(ℑ‘(log‘𝐴))) = (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3835, 37breqtrrd 4788 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (sin‘(ℑ‘(log‘𝐴))))
3911resincld 14993 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (sin‘(ℑ‘(log‘𝐴))) ∈ ℝ)
4039lt0neg2d 10711 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (sin‘(ℑ‘(log‘𝐴))) ↔ -(sin‘(ℑ‘(log‘𝐴))) < 0))
4138, 40mpbid 222 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -(sin‘(ℑ‘(log‘𝐴))) < 0)
42 pire 24330 . . . . . . . . . . 11 π ∈ ℝ
43 readdcl 10132 . . . . . . . . . . 11 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘𝐴)) + π) ∈ ℝ)
4411, 42, 43sylancl 697 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) + π) ∈ ℝ)
4544adantr 472 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ∈ ℝ)
46 df-neg 10382 . . . . . . . . . . . 12 -π = (0 − π)
47 logimcl 24436 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
488, 47syldan 488 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
4948simpld 477 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
5042renegcli 10455 . . . . . . . . . . . . . 14 -π ∈ ℝ
51 ltle 10239 . . . . . . . . . . . . . 14 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5250, 11, 51sylancr 698 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5349, 52mpd 15 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴)))
5446, 53syl5eqbrr 4796 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 − π) ≤ (ℑ‘(log‘𝐴)))
5542a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → π ∈ ℝ)
5628, 55, 11lesubaddd 10737 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((0 − π) ≤ (ℑ‘(log‘𝐴)) ↔ 0 ≤ ((ℑ‘(log‘𝐴)) + π)))
5754, 56mpbid 222 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 ≤ ((ℑ‘(log‘𝐴)) + π))
5857adantr 472 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤ ((ℑ‘(log‘𝐴)) + π))
5911, 28, 55leadd1d 10734 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) ≤ 0 ↔ ((ℑ‘(log‘𝐴)) + π) ≤ (0 + π)))
6059biimpa 502 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ≤ (0 + π))
61 picn 24331 . . . . . . . . . . 11 π ∈ ℂ
6261addid2i 10337 . . . . . . . . . 10 (0 + π) = π
6360, 62syl6breq 4801 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ≤ π)
6427, 42elicc2i 12353 . . . . . . . . 9 (((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π) ↔ (((ℑ‘(log‘𝐴)) + π) ∈ ℝ ∧ 0 ≤ ((ℑ‘(log‘𝐴)) + π) ∧ ((ℑ‘(log‘𝐴)) + π) ≤ π))
6545, 58, 63, 64syl3anbrc 1383 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π))
66 sinq12ge0 24380 . . . . . . . 8 (((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π) → 0 ≤ (sin‘((ℑ‘(log‘𝐴)) + π)))
6765, 66syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤ (sin‘((ℑ‘(log‘𝐴)) + π)))
6811recnd 10181 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
69 sinppi 24361 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ ℂ → (sin‘((ℑ‘(log‘𝐴)) + π)) = -(sin‘(ℑ‘(log‘𝐴))))
7068, 69syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (sin‘((ℑ‘(log‘𝐴)) + π)) = -(sin‘(ℑ‘(log‘𝐴))))
7170adantr 472 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → (sin‘((ℑ‘(log‘𝐴)) + π)) = -(sin‘(ℑ‘(log‘𝐴))))
7267, 71breqtrd 4786 . . . . . 6 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤ -(sin‘(ℑ‘(log‘𝐴))))
7372ex 449 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) ≤ 0 → 0 ≤ -(sin‘(ℑ‘(log‘𝐴)))))
7473con3d 148 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (¬ 0 ≤ -(sin‘(ℑ‘(log‘𝐴))) → ¬ (ℑ‘(log‘𝐴)) ≤ 0))
7539renegcld 10570 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -(sin‘(ℑ‘(log‘𝐴))) ∈ ℝ)
76 ltnle 10230 . . . . 5 ((-(sin‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ∈ ℝ) → (-(sin‘(ℑ‘(log‘𝐴))) < 0 ↔ ¬ 0 ≤ -(sin‘(ℑ‘(log‘𝐴)))))
7775, 27, 76sylancl 697 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-(sin‘(ℑ‘(log‘𝐴))) < 0 ↔ ¬ 0 ≤ -(sin‘(ℑ‘(log‘𝐴)))))
78 ltnle 10230 . . . . 5 ((0 ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (0 < (ℑ‘(log‘𝐴)) ↔ ¬ (ℑ‘(log‘𝐴)) ≤ 0))
7927, 11, 78sylancr 698 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐴)) ↔ ¬ (ℑ‘(log‘𝐴)) ≤ 0))
8074, 77, 793imtr4d 283 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-(sin‘(ℑ‘(log‘𝐴))) < 0 → 0 < (ℑ‘(log‘𝐴))))
8141, 80mpd 15 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(log‘𝐴)))
82 rpre 11953 . . . . . . . . 9 (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
8382renegcld 10570 . . . . . . . 8 (-𝐴 ∈ ℝ+ → --𝐴 ∈ ℝ)
84 negneg 10444 . . . . . . . . . 10 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
8584adantr 472 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → --𝐴 = 𝐴)
8685eleq1d 2788 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (--𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
8783, 86syl5ib 234 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-𝐴 ∈ ℝ+𝐴 ∈ ℝ))
88 lognegb 24456 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
898, 88syldan 488 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
90 reim0b 13979 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
9190adantr 472 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
9287, 89, 913imtr3d 282 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) = π → (ℑ‘𝐴) = 0))
9392necon3d 2917 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘𝐴) ≠ 0 → (ℑ‘(log‘𝐴)) ≠ π))
943, 93mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ≠ π)
9594necomd 2951 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → π ≠ (ℑ‘(log‘𝐴)))
9648simprd 482 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ π)
9711, 55, 96leltned 10303 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) < π ↔ π ≠ (ℑ‘(log‘𝐴))))
9895, 97mpbird 247 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) < π)
99 0xr 10199 . . 3 0 ∈ ℝ*
10042rexri 10210 . . 3 π ∈ ℝ*
101 elioo2 12330 . . 3 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((ℑ‘(log‘𝐴)) ∈ (0(,)π) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ 0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π)))
10299, 100, 101mp2an 710 . 2 ((ℑ‘(log‘𝐴)) ∈ (0(,)π) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ 0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
10311, 81, 98, 102syl3anbrc 1383 1 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103  wne 2896   class class class wbr 4760  cfv 6001  (class class class)co 6765  cc 10047  cr 10048  0cc0 10049  ici 10051   + caddc 10052   · cmul 10054  *cxr 10186   < clt 10187  cle 10188  cmin 10379  -cneg 10380   / cdiv 10797  +crp 11946  (,)cioo 12289  [,]cicc 12292  cim 13958  abscabs 14094  expce 14912  sincsin 14914  πcpi 14917  logclog 24421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128  ax-mulf 10129
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-ioc 12294  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-fl 12708  df-mod 12784  df-seq 12917  df-exp 12976  df-fac 13176  df-bc 13205  df-hash 13233  df-shft 13927  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-limsup 14322  df-clim 14339  df-rlim 14340  df-sum 14537  df-ef 14918  df-sin 14920  df-cos 14921  df-pi 14923  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-sca 16080  df-vsca 16081  df-ip 16082  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-hom 16089  df-cco 16090  df-rest 16206  df-topn 16207  df-0g 16225  df-gsum 16226  df-topgen 16227  df-pt 16228  df-prds 16231  df-xrs 16285  df-qtop 16290  df-imas 16291  df-xps 16293  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-submnd 17458  df-mulg 17663  df-cntz 17871  df-cmn 18316  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-fbas 19866  df-fg 19867  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948  df-nei 21025  df-lp 21063  df-perf 21064  df-cn 21154  df-cnp 21155  df-haus 21242  df-tx 21488  df-hmeo 21681  df-fil 21772  df-fm 21864  df-flim 21865  df-flf 21866  df-xms 22247  df-ms 22248  df-tms 22249  df-cncf 22803  df-limc 23750  df-dv 23751  df-log 24423
This theorem is referenced by:  argimlt0  24479  logneg2  24481  logcnlem3  24510  atanlogaddlem  24760
  Copyright terms: Public domain W3C validator