![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addid2i | Structured version Visualization version GIF version |
Description: 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
addid2i | ⊢ (0 + 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addid2 10431 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 (class class class)co 6814 ℂcc 10146 0cc0 10148 + caddc 10151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-ltxr 10291 |
This theorem is referenced by: ine0 10677 muleqadd 10883 inelr 11222 0p1e1 11344 num0h 11721 nummul1c 11774 decrmac 11789 decmul1 11797 decmul1OLD 11798 fz0tp 12654 fz0to4untppr 12656 fzo0to3tp 12768 cats1fvn 13823 rei 14115 imi 14116 ef01bndlem 15133 gcdaddmlem 15467 dec5dvds2 15991 2exp16 16019 43prm 16051 83prm 16052 139prm 16053 163prm 16054 317prm 16055 631prm 16056 1259lem1 16060 1259lem2 16061 1259lem3 16062 1259lem4 16063 1259lem5 16064 2503lem1 16066 2503lem2 16067 2503lem3 16068 2503prm 16069 4001lem1 16070 4001lem2 16071 4001lem3 16072 4001prm 16074 frgpnabllem1 18496 pcoass 23044 dvradcnv 24394 efhalfpi 24443 sinq34lt0t 24481 efifo 24513 logm1 24555 argimgt0 24578 ang180lem4 24762 1cubr 24789 asin1 24841 atanlogsublem 24862 dvatan 24882 log2ublem3 24895 log2ub 24896 basellem9 25035 cht2 25118 log2sumbnd 25453 ax5seglem7 26035 ex-fac 27640 dp20h 29916 dpmul4 29952 hgt750lem2 31060 dirkertrigeqlem1 40836 dirkertrigeqlem3 40838 fourierdlem103 40947 sqwvfoura 40966 sqwvfourb 40967 fouriersw 40969 fmtno5lem1 41993 fmtno5lem2 41994 fmtno5lem4 41996 fmtno4prmfac 42012 fmtno5faclem2 42020 fmtno5faclem3 42021 fmtno5fac 42022 139prmALT 42039 127prm 42043 2exp11 42045 |
Copyright terms: Public domain | W3C validator |