MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dv11cn Structured version   Visualization version   GIF version

Theorem dv11cn 24598
Description: Two functions defined on a ball whose derivatives are the same and which are equal at any given point 𝐶 in the ball must be equal everywhere. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
dv11cn.x 𝑋 = (𝐴(ball‘(abs ∘ − ))𝑅)
dv11cn.a (𝜑𝐴 ∈ ℂ)
dv11cn.r (𝜑𝑅 ∈ ℝ*)
dv11cn.f (𝜑𝐹:𝑋⟶ℂ)
dv11cn.g (𝜑𝐺:𝑋⟶ℂ)
dv11cn.d (𝜑 → dom (ℂ D 𝐹) = 𝑋)
dv11cn.e (𝜑 → (ℂ D 𝐹) = (ℂ D 𝐺))
dv11cn.c (𝜑𝐶𝑋)
dv11cn.p (𝜑 → (𝐹𝐶) = (𝐺𝐶))
Assertion
Ref Expression
dv11cn (𝜑𝐹 = 𝐺)

Proof of Theorem dv11cn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dv11cn.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
21ffnd 6515 . . . 4 (𝜑𝐹 Fn 𝑋)
3 dv11cn.g . . . . 5 (𝜑𝐺:𝑋⟶ℂ)
43ffnd 6515 . . . 4 (𝜑𝐺 Fn 𝑋)
5 dv11cn.x . . . . . 6 𝑋 = (𝐴(ball‘(abs ∘ − ))𝑅)
65ovexi 7190 . . . . 5 𝑋 ∈ V
76a1i 11 . . . 4 (𝜑𝑋 ∈ V)
8 inidm 4195 . . . 4 (𝑋𝑋) = 𝑋
92, 4, 7, 7, 8offn 7420 . . 3 (𝜑 → (𝐹f𝐺) Fn 𝑋)
10 0cn 10633 . . . 4 0 ∈ ℂ
11 fnconstg 6567 . . . 4 (0 ∈ ℂ → (𝑋 × {0}) Fn 𝑋)
1210, 11mp1i 13 . . 3 (𝜑 → (𝑋 × {0}) Fn 𝑋)
13 subcl 10885 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) ∈ ℂ)
1413adantl 484 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥𝑦) ∈ ℂ)
1514, 1, 3, 7, 7, 8off 7424 . . . . . 6 (𝜑 → (𝐹f𝐺):𝑋⟶ℂ)
1615ffvelrnda 6851 . . . . 5 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝑥) ∈ ℂ)
17 dv11cn.c . . . . . . . . 9 (𝜑𝐶𝑋)
1817anim1ci 617 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑥𝑋𝐶𝑋))
19 cnxmet 23381 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
20 dv11cn.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
21 dv11cn.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ*)
22 blssm 23028 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝐴(ball‘(abs ∘ − ))𝑅) ⊆ ℂ)
2319, 20, 21, 22mp3an2i 1462 . . . . . . . . . 10 (𝜑 → (𝐴(ball‘(abs ∘ − ))𝑅) ⊆ ℂ)
245, 23eqsstrid 4015 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
251ffvelrnda 6851 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
263ffvelrnda 6851 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
271feqmptd 6733 . . . . . . . . . . . . . . 15 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
283feqmptd 6733 . . . . . . . . . . . . . . 15 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
297, 25, 26, 27, 28offval2 7426 . . . . . . . . . . . . . 14 (𝜑 → (𝐹f𝐺) = (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥))))
3029oveq2d 7172 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝐹f𝐺)) = (ℂ D (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))))
31 cnelprrecn 10630 . . . . . . . . . . . . . . 15 ℂ ∈ {ℝ, ℂ}
3231a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℂ ∈ {ℝ, ℂ})
33 fvexd 6685 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → ((ℂ D 𝐹)‘𝑥) ∈ V)
3427oveq2d 7172 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐹) = (ℂ D (𝑥𝑋 ↦ (𝐹𝑥))))
35 dvfcn 24506 . . . . . . . . . . . . . . . . 17 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
36 dv11cn.d . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (ℂ D 𝐹) = 𝑋)
3736feq2d 6500 . . . . . . . . . . . . . . . . 17 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):𝑋⟶ℂ))
3835, 37mpbii 235 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ D 𝐹):𝑋⟶ℂ)
3938feqmptd 6733 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐹) = (𝑥𝑋 ↦ ((ℂ D 𝐹)‘𝑥)))
4034, 39eqtr3d 2858 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D (𝑥𝑋 ↦ (𝐹𝑥))) = (𝑥𝑋 ↦ ((ℂ D 𝐹)‘𝑥)))
41 dv11cn.e . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐹) = (ℂ D 𝐺))
4228oveq2d 7172 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D 𝐺) = (ℂ D (𝑥𝑋 ↦ (𝐺𝑥))))
4341, 39, 423eqtr3rd 2865 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D (𝑥𝑋 ↦ (𝐺𝑥))) = (𝑥𝑋 ↦ ((ℂ D 𝐹)‘𝑥)))
4432, 25, 33, 40, 26, 33, 43dvmptsub 24564 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))) = (𝑥𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))))
4538ffvelrnda 6851 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → ((ℂ D 𝐹)‘𝑥) ∈ ℂ)
4645subidd 10985 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥)) = 0)
4746mpteq2dva 5161 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))) = (𝑥𝑋 ↦ 0))
48 fconstmpt 5614 . . . . . . . . . . . . . 14 (𝑋 × {0}) = (𝑥𝑋 ↦ 0)
4947, 48syl6eqr 2874 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑋 ↦ (((ℂ D 𝐹)‘𝑥) − ((ℂ D 𝐹)‘𝑥))) = (𝑋 × {0}))
5030, 44, 493eqtrd 2860 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝐹f𝐺)) = (𝑋 × {0}))
5150dmeqd 5774 . . . . . . . . . . 11 (𝜑 → dom (ℂ D (𝐹f𝐺)) = dom (𝑋 × {0}))
52 snnzg 4710 . . . . . . . . . . . 12 (0 ∈ ℂ → {0} ≠ ∅)
53 dmxp 5799 . . . . . . . . . . . 12 ({0} ≠ ∅ → dom (𝑋 × {0}) = 𝑋)
5410, 52, 53mp2b 10 . . . . . . . . . . 11 dom (𝑋 × {0}) = 𝑋
5551, 54syl6eq 2872 . . . . . . . . . 10 (𝜑 → dom (ℂ D (𝐹f𝐺)) = 𝑋)
56 eqimss2 4024 . . . . . . . . . 10 (dom (ℂ D (𝐹f𝐺)) = 𝑋𝑋 ⊆ dom (ℂ D (𝐹f𝐺)))
5755, 56syl 17 . . . . . . . . 9 (𝜑𝑋 ⊆ dom (ℂ D (𝐹f𝐺)))
58 0red 10644 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
5950fveq1d 6672 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (𝐹f𝐺))‘𝑥) = ((𝑋 × {0})‘𝑥))
60 c0ex 10635 . . . . . . . . . . . . 13 0 ∈ V
6160fvconst2 6966 . . . . . . . . . . . 12 (𝑥𝑋 → ((𝑋 × {0})‘𝑥) = 0)
6259, 61sylan9eq 2876 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → ((ℂ D (𝐹f𝐺))‘𝑥) = 0)
6362abs00bd 14651 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘((ℂ D (𝐹f𝐺))‘𝑥)) = 0)
64 0le0 11739 . . . . . . . . . 10 0 ≤ 0
6563, 64eqbrtrdi 5105 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘((ℂ D (𝐹f𝐺))‘𝑥)) ≤ 0)
6624, 15, 20, 21, 5, 57, 58, 65dvlipcn 24591 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝐶𝑋)) → (abs‘(((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶))) ≤ (0 · (abs‘(𝑥𝐶))))
6718, 66syldan 593 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘(((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶))) ≤ (0 · (abs‘(𝑥𝐶))))
6829fveq1d 6672 . . . . . . . . . . . 12 (𝜑 → ((𝐹f𝐺)‘𝐶) = ((𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))‘𝐶))
69 fveq2 6670 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
70 fveq2 6670 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → (𝐺𝑥) = (𝐺𝐶))
7169, 70oveq12d 7174 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → ((𝐹𝑥) − (𝐺𝑥)) = ((𝐹𝐶) − (𝐺𝐶)))
72 eqid 2821 . . . . . . . . . . . . . 14 (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥))) = (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))
73 ovex 7189 . . . . . . . . . . . . . 14 ((𝐹𝐶) − (𝐺𝐶)) ∈ V
7471, 72, 73fvmpt 6768 . . . . . . . . . . . . 13 (𝐶𝑋 → ((𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))‘𝐶) = ((𝐹𝐶) − (𝐺𝐶)))
7517, 74syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))‘𝐶) = ((𝐹𝐶) − (𝐺𝐶)))
761, 17ffvelrnd 6852 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐶) ∈ ℂ)
77 dv11cn.p . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐶) = (𝐺𝐶))
7876, 77subeq0bd 11066 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐶) − (𝐺𝐶)) = 0)
7968, 75, 783eqtrd 2860 . . . . . . . . . . 11 (𝜑 → ((𝐹f𝐺)‘𝐶) = 0)
8079adantr 483 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝐶) = 0)
8180oveq2d 7172 . . . . . . . . 9 ((𝜑𝑥𝑋) → (((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶)) = (((𝐹f𝐺)‘𝑥) − 0))
8216subid1d 10986 . . . . . . . . 9 ((𝜑𝑥𝑋) → (((𝐹f𝐺)‘𝑥) − 0) = ((𝐹f𝐺)‘𝑥))
8381, 82eqtrd 2856 . . . . . . . 8 ((𝜑𝑥𝑋) → (((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶)) = ((𝐹f𝐺)‘𝑥))
8483fveq2d 6674 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘(((𝐹f𝐺)‘𝑥) − ((𝐹f𝐺)‘𝐶))) = (abs‘((𝐹f𝐺)‘𝑥)))
8524sselda 3967 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
8624, 17sseldd 3968 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
8786adantr 483 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
8885, 87subcld 10997 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑥𝐶) ∈ ℂ)
8988abscld 14796 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘(𝑥𝐶)) ∈ ℝ)
9089recnd 10669 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝑥𝐶)) ∈ ℂ)
9190mul02d 10838 . . . . . . 7 ((𝜑𝑥𝑋) → (0 · (abs‘(𝑥𝐶))) = 0)
9267, 84, 913brtr3d 5097 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘((𝐹f𝐺)‘𝑥)) ≤ 0)
9316absge0d 14804 . . . . . 6 ((𝜑𝑥𝑋) → 0 ≤ (abs‘((𝐹f𝐺)‘𝑥)))
9416abscld 14796 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘((𝐹f𝐺)‘𝑥)) ∈ ℝ)
95 0re 10643 . . . . . . 7 0 ∈ ℝ
96 letri3 10726 . . . . . . 7 (((abs‘((𝐹f𝐺)‘𝑥)) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝐹f𝐺)‘𝑥)) = 0 ↔ ((abs‘((𝐹f𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤ (abs‘((𝐹f𝐺)‘𝑥)))))
9794, 95, 96sylancl 588 . . . . . 6 ((𝜑𝑥𝑋) → ((abs‘((𝐹f𝐺)‘𝑥)) = 0 ↔ ((abs‘((𝐹f𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤ (abs‘((𝐹f𝐺)‘𝑥)))))
9892, 93, 97mpbir2and 711 . . . . 5 ((𝜑𝑥𝑋) → (abs‘((𝐹f𝐺)‘𝑥)) = 0)
9916, 98abs00d 14806 . . . 4 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝑥) = 0)
10061adantl 484 . . . 4 ((𝜑𝑥𝑋) → ((𝑋 × {0})‘𝑥) = 0)
10199, 100eqtr4d 2859 . . 3 ((𝜑𝑥𝑋) → ((𝐹f𝐺)‘𝑥) = ((𝑋 × {0})‘𝑥))
1029, 12, 101eqfnfvd 6805 . 2 (𝜑 → (𝐹f𝐺) = (𝑋 × {0}))
103 ofsubeq0 11635 . . 3 ((𝑋 ∈ V ∧ 𝐹:𝑋⟶ℂ ∧ 𝐺:𝑋⟶ℂ) → ((𝐹f𝐺) = (𝑋 × {0}) ↔ 𝐹 = 𝐺))
1046, 1, 3, 103mp3an2i 1462 . 2 (𝜑 → ((𝐹f𝐺) = (𝑋 × {0}) ↔ 𝐹 = 𝐺))
105102, 104mpbid 234 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  wss 3936  c0 4291  {csn 4567  {cpr 4569   class class class wbr 5066  cmpt 5146   × cxp 5553  dom cdm 5555  ccom 5559   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  f cof 7407  cc 10535  cr 10536  0cc0 10537   · cmul 10542  *cxr 10674  cle 10676  cmin 10870  abscabs 14593  ∞Metcxmet 20530  ballcbl 20532   D cdv 24461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465
This theorem is referenced by:  logtayl  25243  binomcxplemnotnn0  40708
  Copyright terms: Public domain W3C validator