Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem31 Structured version   Visualization version   GIF version

Theorem etransclem31 40800
 Description: The 𝑁-th derivative of 𝐻 applied to 𝑌. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem31.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem31.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem31.p (𝜑𝑃 ∈ ℕ)
etransclem31.m (𝜑𝑀 ∈ ℕ0)
etransclem31.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem31.n (𝜑𝑁 ∈ ℕ0)
etransclem31.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem31.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem31.y (𝜑𝑌𝑋)
Assertion
Ref Expression
etransclem31 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑌) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑥   𝐻,𝑐,𝑗,𝑛,𝑥   𝑀,𝑐,𝑗,𝑥,𝑛   𝑁,𝑐,𝑗,𝑥,𝑛   𝑃,𝑗,𝑥   𝑆,𝑐,𝑗,𝑛,𝑥   𝑗,𝑋,𝑥,𝑛   𝑌,𝑐,𝑗,𝑥   𝜑,𝑐,𝑗,𝑥,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛,𝑐)   𝐹(𝑥,𝑗,𝑛,𝑐)   𝑋(𝑐)   𝑌(𝑛)

Proof of Theorem etransclem31
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem31.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem31.x . . . 4 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 etransclem31.p . . . 4 (𝜑𝑃 ∈ ℕ)
4 etransclem31.m . . . 4 (𝜑𝑀 ∈ ℕ0)
5 etransclem31.f . . . 4 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
6 etransclem31.n . . . 4 (𝜑𝑁 ∈ ℕ0)
7 etransclem31.h . . . 4 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
8 etransclem31.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
91, 2, 3, 4, 5, 6, 7, 8etransclem30 40799 . . 3 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))))
10 fveq2 6229 . . . . . . 7 (𝑥 = 𝑌 → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌))
1110prodeq2ad 40142 . . . . . 6 (𝑥 = 𝑌 → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌))
1211oveq2d 6706 . . . . 5 (𝑥 = 𝑌 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)))
1312sumeq2ad 14478 . . . 4 (𝑥 = 𝑌 → Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)))
1413adantl 481 . . 3 ((𝜑𝑥 = 𝑌) → Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)))
15 etransclem31.y . . 3 (𝜑𝑌𝑋)
168, 6etransclem16 40785 . . . 4 (𝜑 → (𝐶𝑁) ∈ Fin)
176faccld 13111 . . . . . . . 8 (𝜑 → (!‘𝑁) ∈ ℕ)
1817nncnd 11074 . . . . . . 7 (𝜑 → (!‘𝑁) ∈ ℂ)
1918adantr 480 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘𝑁) ∈ ℂ)
20 fzfid 12812 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (0...𝑀) ∈ Fin)
21 fzssnn0 39846 . . . . . . . . . 10 (0...𝑁) ⊆ ℕ0
22 ssrab2 3720 . . . . . . . . . . . . . 14 {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ⊆ ((0...𝑁) ↑𝑚 (0...𝑀))
23 simpr 476 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (𝐶𝑁))
248, 6etransclem12 40781 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
2524adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
2623, 25eleqtrd 2732 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
2722, 26sseldi 3634 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)))
2827adantr 480 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)))
29 elmapi 7921 . . . . . . . . . . . 12 (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
3028, 29syl 17 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
31 simpr 476 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
3230, 31ffvelrnd 6400 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
3321, 32sseldi 3634 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℕ0)
3433faccld 13111 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℕ)
3534nncnd 11074 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℂ)
3620, 35fprodcl 14726 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ∈ ℂ)
3734nnne0d 11103 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ≠ 0)
3820, 35, 37fprodn0 14753 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ≠ 0)
3919, 36, 38divcld 10839 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℂ)
401ad2antrr 762 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
412ad2antrr 762 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
423ad2antrr 762 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
43 etransclem5 40774 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
447, 43eqtri 2673 . . . . . . . 8 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
4540, 41, 42, 44, 31, 33etransclem20 40789 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗)):𝑋⟶ℂ)
4615ad2antrr 762 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑌𝑋)
4745, 46ffvelrnd 6400 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌) ∈ ℂ)
4820, 47fprodcl 14726 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌) ∈ ℂ)
4939, 48mulcld 10098 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)) ∈ ℂ)
5016, 49fsumcl 14508 . . 3 (𝜑 → Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)) ∈ ℂ)
519, 14, 15, 50fvmptd 6327 . 2 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑌) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)))
5240, 41, 42, 44, 31, 33, 46etransclem21 40790 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌) = if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))))
5352prodeq2dv 14697 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌) = ∏𝑗 ∈ (0...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))))
54 nn0uz 11760 . . . . . . . 8 0 = (ℤ‘0)
554, 54syl6eleq 2740 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘0))
5655adantr 480 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑀 ∈ (ℤ‘0))
5752, 47eqeltrrd 2731 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) ∈ ℂ)
58 iftrue 4125 . . . . . . . 8 (𝑗 = 0 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
59 fveq2 6229 . . . . . . . 8 (𝑗 = 0 → (𝑐𝑗) = (𝑐‘0))
6058, 59breq12d 4698 . . . . . . 7 (𝑗 = 0 → (if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗) ↔ (𝑃 − 1) < (𝑐‘0)))
6158fveq2d 6233 . . . . . . . . 9 (𝑗 = 0 → (!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) = (!‘(𝑃 − 1)))
6258, 59oveq12d 6708 . . . . . . . . . 10 (𝑗 = 0 → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)) = ((𝑃 − 1) − (𝑐‘0)))
6362fveq2d 6233 . . . . . . . . 9 (𝑗 = 0 → (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))) = (!‘((𝑃 − 1) − (𝑐‘0))))
6461, 63oveq12d 6708 . . . . . . . 8 (𝑗 = 0 → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) = ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))))
65 oveq2 6698 . . . . . . . . 9 (𝑗 = 0 → (𝑌𝑗) = (𝑌 − 0))
6665, 62oveq12d 6708 . . . . . . . 8 (𝑗 = 0 → ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))) = ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))
6764, 66oveq12d 6708 . . . . . . 7 (𝑗 = 0 → (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0)))))
6860, 67ifbieq2d 4144 . . . . . 6 (𝑗 = 0 → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))))
6956, 57, 68fprod1p 14742 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))))))
701, 2dvdmsscn 40469 . . . . . . . . . . . 12 (𝜑𝑋 ⊆ ℂ)
7170, 15sseldd 3637 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℂ)
7271subid1d 10419 . . . . . . . . . 10 (𝜑 → (𝑌 − 0) = 𝑌)
7372oveq1d 6705 . . . . . . . . 9 (𝜑 → ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))) = (𝑌↑((𝑃 − 1) − (𝑐‘0))))
7473oveq2d 6706 . . . . . . . 8 (𝜑 → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0)))))
7574ifeq2d 4138 . . . . . . 7 (𝜑 → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) = if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))))
76 0p1e1 11170 . . . . . . . . . . 11 (0 + 1) = 1
7776oveq1i 6700 . . . . . . . . . 10 ((0 + 1)...𝑀) = (1...𝑀)
7877prodeq1i 14692 . . . . . . . . 9 𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))))
79 0red 10079 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ)
80 1red 10093 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ)
81 elfzelz 12380 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
8281zred 11520 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ)
83 0lt1 10588 . . . . . . . . . . . . . . . . 17 0 < 1
8483a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 0 < 1)
85 elfzle1 12382 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗)
8679, 80, 82, 84, 85ltletrd 10235 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → 0 < 𝑗)
8786gt0ne0d 10630 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ≠ 0)
8887neneqd 2828 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → ¬ 𝑗 = 0)
8988iffalsed 4130 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → if(𝑗 = 0, (𝑃 − 1), 𝑃) = 𝑃)
9089breq1d 4695 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗) ↔ 𝑃 < (𝑐𝑗)))
9189fveq2d 6233 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → (!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) = (!‘𝑃))
9289oveq1d 6705 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)) = (𝑃 − (𝑐𝑗)))
9392fveq2d 6233 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))) = (!‘(𝑃 − (𝑐𝑗))))
9491, 93oveq12d 6708 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))))
9592oveq2d 6706 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))) = ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))
9694, 95oveq12d 6708 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))
9790, 96ifbieq2d 4144 . . . . . . . . . 10 (𝑗 ∈ (1...𝑀) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))
9897prodeq2i 14693 . . . . . . . . 9 𝑗 ∈ (1...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))
9978, 98eqtri 2673 . . . . . . . 8 𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))
10099a1i 11 . . . . . . 7 (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))
10175, 100oveq12d 6708 . . . . . 6 (𝜑 → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))))
102101adantr 480 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))))
10353, 69, 1023eqtrd 2689 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))))
104103oveq2d 6706 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))))
105104sumeq2dv 14477 . 2 (𝜑 → Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))))
10651, 105eqtrd 2685 1 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑌) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  {crab 2945  ifcif 4119  {cpr 4212   class class class wbr 4685   ↦ cmpt 4762  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↑𝑚 cmap 7899  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112   − cmin 10304   / cdiv 10722  ℕcn 11058  ℕ0cn0 11330  ℤ≥cuz 11725  ...cfz 12364  ↑cexp 12900  !cfa 13100  Σcsu 14460  ∏cprod 14679   ↾t crest 16128  TopOpenctopn 16129  ℂfldccnfld 19794   D𝑛 cdvn 23673 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-prod 14680  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-dvn 23677 This theorem is referenced by:  etransclem35  40804  etransclem36  40805  etransclem37  40806  etransclem38  40807
 Copyright terms: Public domain W3C validator