Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem31 Structured version   Visualization version   GIF version

Theorem etransclem31 39776
Description: The 𝑁-th derivative of 𝐻 applied to 𝑌. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem31.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem31.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem31.p (𝜑𝑃 ∈ ℕ)
etransclem31.m (𝜑𝑀 ∈ ℕ0)
etransclem31.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem31.n (𝜑𝑁 ∈ ℕ0)
etransclem31.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem31.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem31.y (𝜑𝑌𝑋)
Assertion
Ref Expression
etransclem31 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑌) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑥   𝐻,𝑐,𝑗,𝑛,𝑥   𝑀,𝑐,𝑗,𝑥,𝑛   𝑁,𝑐,𝑗,𝑥,𝑛   𝑃,𝑗,𝑥   𝑆,𝑐,𝑗,𝑛,𝑥   𝑗,𝑋,𝑥,𝑛   𝑌,𝑐,𝑗,𝑥   𝜑,𝑐,𝑗,𝑥,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛,𝑐)   𝐹(𝑥,𝑗,𝑛,𝑐)   𝑋(𝑐)   𝑌(𝑛)

Proof of Theorem etransclem31
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem31.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem31.x . . . 4 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 etransclem31.p . . . 4 (𝜑𝑃 ∈ ℕ)
4 etransclem31.m . . . 4 (𝜑𝑀 ∈ ℕ0)
5 etransclem31.f . . . 4 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
6 etransclem31.n . . . 4 (𝜑𝑁 ∈ ℕ0)
7 etransclem31.h . . . 4 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
8 etransclem31.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
91, 2, 3, 4, 5, 6, 7, 8etransclem30 39775 . . 3 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))))
10 fveq2 6150 . . . . . . 7 (𝑥 = 𝑌 → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌))
1110prodeq2ad 39215 . . . . . 6 (𝑥 = 𝑌 → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌))
1211oveq2d 6621 . . . . 5 (𝑥 = 𝑌 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)))
1312sumeq2ad 39188 . . . 4 (𝑥 = 𝑌 → Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)))
1413adantl 482 . . 3 ((𝜑𝑥 = 𝑌) → Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)))
15 etransclem31.y . . 3 (𝜑𝑌𝑋)
168, 6etransclem16 39761 . . . 4 (𝜑 → (𝐶𝑁) ∈ Fin)
176faccld 13008 . . . . . . . 8 (𝜑 → (!‘𝑁) ∈ ℕ)
1817nncnd 10981 . . . . . . 7 (𝜑 → (!‘𝑁) ∈ ℂ)
1918adantr 481 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘𝑁) ∈ ℂ)
20 fzfid 12709 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (0...𝑀) ∈ Fin)
21 fzssnn0 38984 . . . . . . . . . 10 (0...𝑁) ⊆ ℕ0
22 ssrab2 3671 . . . . . . . . . . . . . 14 {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ⊆ ((0...𝑁) ↑𝑚 (0...𝑀))
23 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (𝐶𝑁))
248, 6etransclem12 39757 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
2524adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
2623, 25eleqtrd 2706 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
2722, 26sseldi 3586 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)))
2827adantr 481 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)))
29 elmapi 7824 . . . . . . . . . . . 12 (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
3028, 29syl 17 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
31 simpr 477 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
3230, 31ffvelrnd 6317 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
3321, 32sseldi 3586 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℕ0)
3433faccld 13008 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℕ)
3534nncnd 10981 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℂ)
3620, 35fprodcl 14602 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ∈ ℂ)
3734nnne0d 11010 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ≠ 0)
3820, 35, 37fprodn0 14629 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ≠ 0)
3919, 36, 38divcld 10746 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℂ)
401ad2antrr 761 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
412ad2antrr 761 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
423ad2antrr 761 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
43 etransclem5 39750 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
447, 43eqtri 2648 . . . . . . . 8 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
4540, 41, 42, 44, 31, 33etransclem20 39765 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗)):𝑋⟶ℂ)
4615ad2antrr 761 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑌𝑋)
4745, 46ffvelrnd 6317 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌) ∈ ℂ)
4820, 47fprodcl 14602 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌) ∈ ℂ)
4939, 48mulcld 10005 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)) ∈ ℂ)
5016, 49fsumcl 14392 . . 3 (𝜑 → Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)) ∈ ℂ)
519, 14, 15, 50fvmptd 6246 . 2 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑌) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)))
5240, 41, 42, 44, 31, 33, 46etransclem21 39766 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌) = if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))))
5352prodeq2dv 14573 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌) = ∏𝑗 ∈ (0...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))))
54 nn0uz 11666 . . . . . . . 8 0 = (ℤ‘0)
554, 54syl6eleq 2714 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘0))
5655adantr 481 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑀 ∈ (ℤ‘0))
5752, 47eqeltrrd 2705 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) ∈ ℂ)
58 iftrue 4069 . . . . . . . 8 (𝑗 = 0 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
59 fveq2 6150 . . . . . . . 8 (𝑗 = 0 → (𝑐𝑗) = (𝑐‘0))
6058, 59breq12d 4631 . . . . . . 7 (𝑗 = 0 → (if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗) ↔ (𝑃 − 1) < (𝑐‘0)))
6158fveq2d 6154 . . . . . . . . 9 (𝑗 = 0 → (!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) = (!‘(𝑃 − 1)))
6258, 59oveq12d 6623 . . . . . . . . . 10 (𝑗 = 0 → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)) = ((𝑃 − 1) − (𝑐‘0)))
6362fveq2d 6154 . . . . . . . . 9 (𝑗 = 0 → (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))) = (!‘((𝑃 − 1) − (𝑐‘0))))
6461, 63oveq12d 6623 . . . . . . . 8 (𝑗 = 0 → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) = ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))))
65 oveq2 6613 . . . . . . . . 9 (𝑗 = 0 → (𝑌𝑗) = (𝑌 − 0))
6665, 62oveq12d 6623 . . . . . . . 8 (𝑗 = 0 → ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))) = ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))
6764, 66oveq12d 6623 . . . . . . 7 (𝑗 = 0 → (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0)))))
6860, 67ifbieq2d 4088 . . . . . 6 (𝑗 = 0 → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))))
6956, 57, 68fprod1p 14618 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))))))
701, 2dvdmsscn 39444 . . . . . . . . . . . 12 (𝜑𝑋 ⊆ ℂ)
7170, 15sseldd 3589 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℂ)
7271subid1d 10326 . . . . . . . . . 10 (𝜑 → (𝑌 − 0) = 𝑌)
7372oveq1d 6620 . . . . . . . . 9 (𝜑 → ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))) = (𝑌↑((𝑃 − 1) − (𝑐‘0))))
7473oveq2d 6621 . . . . . . . 8 (𝜑 → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0)))))
7574ifeq2d 4082 . . . . . . 7 (𝜑 → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) = if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))))
76 0p1e1 11077 . . . . . . . . . . 11 (0 + 1) = 1
7776oveq1i 6615 . . . . . . . . . 10 ((0 + 1)...𝑀) = (1...𝑀)
7877prodeq1i 14568 . . . . . . . . 9 𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))))
79 0red 9986 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ)
80 1red 10000 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ)
81 elfzelz 12281 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
8281zred 11426 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ)
83 0lt1 10495 . . . . . . . . . . . . . . . . 17 0 < 1
8483a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 0 < 1)
85 elfzle1 12283 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗)
8679, 80, 82, 84, 85ltletrd 10142 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → 0 < 𝑗)
8786gt0ne0d 10537 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ≠ 0)
8887neneqd 2801 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → ¬ 𝑗 = 0)
8988iffalsed 4074 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → if(𝑗 = 0, (𝑃 − 1), 𝑃) = 𝑃)
9089breq1d 4628 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗) ↔ 𝑃 < (𝑐𝑗)))
9189fveq2d 6154 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → (!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) = (!‘𝑃))
9289oveq1d 6620 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → (if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)) = (𝑃 − (𝑐𝑗)))
9392fveq2d 6154 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))) = (!‘(𝑃 − (𝑐𝑗))))
9491, 93oveq12d 6623 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → ((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))))
9592oveq2d 6621 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))) = ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))
9694, 95oveq12d 6623 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))
9790, 96ifbieq2d 4088 . . . . . . . . . 10 (𝑗 ∈ (1...𝑀) → if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))
9897prodeq2i 14569 . . . . . . . . 9 𝑗 ∈ (1...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))
9978, 98eqtri 2648 . . . . . . . 8 𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))
10099a1i 11 . . . . . . 7 (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))
10175, 100oveq12d 6623 . . . . . 6 (𝜑 → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))))
102101adantr 481 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · ((𝑌 − 0)↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ ((0 + 1)...𝑀)if(if(𝑗 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑗), 0, (((!‘if(𝑗 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))) · ((𝑌𝑗)↑(if(𝑗 = 0, (𝑃 − 1), 𝑃) − (𝑐𝑗)))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))))
10353, 69, 1023eqtrd 2664 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗)))))))
104103oveq2d 6621 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))))
105104sumeq2dv 14362 . 2 (𝜑 → Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑌)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))))
10651, 105eqtrd 2660 1 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑌) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  {crab 2916  ifcif 4063  {cpr 4155   class class class wbr 4618  cmpt 4678  wf 5846  cfv 5850  (class class class)co 6605  𝑚 cmap 7803  cc 9879  cr 9880  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886   < clt 10019  cmin 10211   / cdiv 10629  cn 10965  0cn0 11237  cuz 11631  ...cfz 12265  cexp 12797  !cfa 12997  Σcsu 14345  cprod 14555  t crest 15997  TopOpenctopn 15998  fldccnfld 19660   D𝑛 cdvn 23529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-pm 7806  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-fi 8262  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ico 12120  df-icc 12121  df-fz 12266  df-fzo 12404  df-seq 12739  df-exp 12798  df-fac 12998  df-bc 13027  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-sum 14346  df-prod 14556  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-sca 15873  df-vsca 15874  df-ip 15875  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-hom 15882  df-cco 15883  df-rest 15999  df-topn 16000  df-0g 16018  df-gsum 16019  df-topgen 16020  df-pt 16021  df-prds 16024  df-xrs 16078  df-qtop 16083  df-imas 16084  df-xps 16086  df-mre 16162  df-mrc 16163  df-acs 16165  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-mulg 17457  df-cntz 17666  df-cmn 18111  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-fbas 19657  df-fg 19658  df-cnfld 19661  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-cld 20728  df-ntr 20729  df-cls 20730  df-nei 20807  df-lp 20845  df-perf 20846  df-cn 20936  df-cnp 20937  df-haus 21024  df-tx 21270  df-hmeo 21463  df-fil 21555  df-fm 21647  df-flim 21648  df-flf 21649  df-xms 22030  df-ms 22031  df-tms 22032  df-cncf 22584  df-limc 23531  df-dv 23532  df-dvn 23533
This theorem is referenced by:  etransclem35  39780  etransclem36  39781  etransclem37  39782  etransclem38  39783
  Copyright terms: Public domain W3C validator