Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec3 Structured version   Visualization version   GIF version

Theorem fmtnorec3 43730
Description: The third recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 2-Aug-2021.)
Assertion
Ref Expression
fmtnorec3 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛))))
Distinct variable group:   𝑛,𝑁

Proof of Theorem fmtnorec3
StepHypRef Expression
1 fzfid 13342 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (0...(𝑁 − 2)) ∈ Fin)
2 elfznn0 13001 . . . . . . . . 9 (𝑛 ∈ (0...(𝑁 − 2)) → 𝑛 ∈ ℕ0)
3 fmtnonn 43713 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℕ)
42, 3syl 17 . . . . . . . 8 (𝑛 ∈ (0...(𝑁 − 2)) → (FermatNo‘𝑛) ∈ ℕ)
54nncnd 11654 . . . . . . 7 (𝑛 ∈ (0...(𝑁 − 2)) → (FermatNo‘𝑛) ∈ ℂ)
65adantl 484 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ (0...(𝑁 − 2))) → (FermatNo‘𝑛) ∈ ℂ)
71, 6fprodcl 15306 . . . . 5 (𝑁 ∈ (ℤ‘2) → ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) ∈ ℂ)
8 2cn 11713 . . . . . 6 2 ∈ ℂ
98a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
10 uznn0sub 12278 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
11 fmtnorec2 43725 . . . . . . 7 ((𝑁 − 2) ∈ ℕ0 → (FermatNo‘((𝑁 − 2) + 1)) = (∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) + 2))
1210, 11syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) = (∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) + 2))
1312eqcomd 2827 . . . . 5 (𝑁 ∈ (ℤ‘2) → (∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) + 2) = (FermatNo‘((𝑁 − 2) + 1)))
147, 9, 13mvlraddd 11050 . . . 4 (𝑁 ∈ (ℤ‘2) → ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) = ((FermatNo‘((𝑁 − 2) + 1)) − 2))
1514oveq2d 7172 . . 3 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛)) = ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2)))
1615oveq2d 7172 . 2 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛))) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2))))
17 2nn0 11915 . . . . . . . 8 2 ∈ ℕ0
1817a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
19 eluz2nn 12285 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
20 nnm1nn0 11939 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2119, 20syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ0)
2218, 21nn0expcld 13608 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 − 1)) ∈ ℕ0)
2318, 22nn0expcld 13608 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 1))) ∈ ℕ0)
2423nn0cnd 11958 . . . . 5 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 1))) ∈ ℂ)
25 peano2nn0 11938 . . . . . . . 8 ((𝑁 − 2) ∈ ℕ0 → ((𝑁 − 2) + 1) ∈ ℕ0)
2610, 25syl 17 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) ∈ ℕ0)
27 fmtnonn 43713 . . . . . . 7 (((𝑁 − 2) + 1) ∈ ℕ0 → (FermatNo‘((𝑁 − 2) + 1)) ∈ ℕ)
2826, 27syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) ∈ ℕ)
2928nncnd 11654 . . . . 5 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) ∈ ℂ)
3024, 29, 9subdid 11096 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2)) = (((2↑(2↑(𝑁 − 1))) · (FermatNo‘((𝑁 − 2) + 1))) − ((2↑(2↑(𝑁 − 1))) · 2)))
31 eluzelcn 12256 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
32 ax-1cn 10595 . . . . . . . . . 10 1 ∈ ℂ
3332a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℂ)
34 subsub 10916 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
3534eqcomd 2827 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 2) + 1) = (𝑁 − (2 − 1)))
3631, 9, 33, 35syl3anc 1367 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) = (𝑁 − (2 − 1)))
37 2m1e1 11764 . . . . . . . . 9 (2 − 1) = 1
3837oveq2i 7167 . . . . . . . 8 (𝑁 − (2 − 1)) = (𝑁 − 1)
3936, 38syl6eq 2872 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) = (𝑁 − 1))
4039fveq2d 6674 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) = (FermatNo‘(𝑁 − 1)))
4140oveq2d 7172 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · (FermatNo‘((𝑁 − 2) + 1))) = ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))))
4241oveq1d 7171 . . . 4 (𝑁 ∈ (ℤ‘2) → (((2↑(2↑(𝑁 − 1))) · (FermatNo‘((𝑁 − 2) + 1))) − ((2↑(2↑(𝑁 − 1))) · 2)) = (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2)))
4330, 42eqtrd 2856 . . 3 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2)) = (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2)))
4443oveq2d 7172 . 2 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2))) = ((FermatNo‘(𝑁 − 1)) + (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2))))
45 fmtnonn 43713 . . . . . . . . . 10 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘(𝑁 − 1)) ∈ ℕ)
4621, 45syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) ∈ ℕ)
4746nncnd 11654 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) ∈ ℂ)
4847mulid2d 10659 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (1 · (FermatNo‘(𝑁 − 1))) = (FermatNo‘(𝑁 − 1)))
4948eqcomd 2827 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) = (1 · (FermatNo‘(𝑁 − 1))))
5049oveq1d 7171 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) = ((1 · (FermatNo‘(𝑁 − 1))) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))))
5133, 24, 47adddird 10666 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((1 + (2↑(2↑(𝑁 − 1)))) · (FermatNo‘(𝑁 − 1))) = ((1 · (FermatNo‘(𝑁 − 1))) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))))
5233, 24addcomd 10842 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (1 + (2↑(2↑(𝑁 − 1)))) = ((2↑(2↑(𝑁 − 1))) + 1))
53 fmtno 43711 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘(𝑁 − 1)) = ((2↑(2↑(𝑁 − 1))) + 1))
5421, 53syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) = ((2↑(2↑(𝑁 − 1))) + 1))
5552, 54eqtr4d 2859 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (1 + (2↑(2↑(𝑁 − 1)))) = (FermatNo‘(𝑁 − 1)))
5655oveq1d 7171 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((1 + (2↑(2↑(𝑁 − 1)))) · (FermatNo‘(𝑁 − 1))) = ((FermatNo‘(𝑁 − 1)) · (FermatNo‘(𝑁 − 1))))
5747sqvald 13508 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) = ((FermatNo‘(𝑁 − 1)) · (FermatNo‘(𝑁 − 1))))
5856, 57eqtr4d 2859 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((1 + (2↑(2↑(𝑁 − 1)))) · (FermatNo‘(𝑁 − 1))) = ((FermatNo‘(𝑁 − 1))↑2))
5950, 51, 583eqtr2d 2862 . . . 4 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) = ((FermatNo‘(𝑁 − 1))↑2))
6059oveq1d 7171 . . 3 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) − ((2↑(2↑(𝑁 − 1))) · 2)) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
6124, 47mulcld 10661 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) ∈ ℂ)
6224, 9mulcld 10661 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · 2) ∈ ℂ)
6347, 61, 62addsubassd 11017 . . 3 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) − ((2↑(2↑(𝑁 − 1))) · 2)) = ((FermatNo‘(𝑁 − 1)) + (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2))))
64 npcan1 11065 . . . . . . 7 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
6531, 64syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) + 1) = 𝑁)
6665eqcomd 2827 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 = ((𝑁 − 1) + 1))
6766fveq2d 6674 . . . 4 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = (FermatNo‘((𝑁 − 1) + 1)))
68 fmtnorec1 43719 . . . . 5 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘((𝑁 − 1) + 1)) = ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1))
6921, 68syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 1) + 1)) = ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1))
70 binom2sub1 13583 . . . . . . 7 ((FermatNo‘(𝑁 − 1)) ∈ ℂ → (((FermatNo‘(𝑁 − 1)) − 1)↑2) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1))
7147, 70syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1)) − 1)↑2) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1))
7271oveq1d 7171 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1) = (((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1) + 1))
7346nnsqcld 13606 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) ∈ ℕ)
7473nncnd 11654 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) ∈ ℂ)
759, 47mulcld 10661 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (FermatNo‘(𝑁 − 1))) ∈ ℂ)
7674, 75subcld 10997 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) ∈ ℂ)
7776, 33, 33addassd 10663 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1) + 1) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (1 + 1)))
78322timesi 11776 . . . . . . . . 9 (2 · 1) = (1 + 1)
7978eqcomi 2830 . . . . . . . 8 (1 + 1) = (2 · 1)
8079a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (1 + 1) = (2 · 1))
8180oveq2d 7172 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (1 + 1)) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)))
8277, 81eqtrd 2856 . . . . 5 (𝑁 ∈ (ℤ‘2) → (((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1) + 1) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)))
838, 32mulcli 10648 . . . . . . . 8 (2 · 1) ∈ ℂ
8483a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2 · 1) ∈ ℂ)
8574, 75, 84subadd23d 11019 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)) = (((FermatNo‘(𝑁 − 1))↑2) + ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1))))))
869, 33, 47subdid 11096 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (1 − (FermatNo‘(𝑁 − 1)))) = ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1)))))
8786eqcomd 2827 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1)))) = (2 · (1 − (FermatNo‘(𝑁 − 1)))))
8887oveq2d 7172 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) + ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) + (2 · (1 − (FermatNo‘(𝑁 − 1))))))
8933, 47subcld 10997 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 − (FermatNo‘(𝑁 − 1))) ∈ ℂ)
909, 89mulneg2d 11094 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · -(1 − (FermatNo‘(𝑁 − 1)))) = -(2 · (1 − (FermatNo‘(𝑁 − 1)))))
9133, 47negsubdi2d 11013 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → -(1 − (FermatNo‘(𝑁 − 1))) = ((FermatNo‘(𝑁 − 1)) − 1))
92 fmtnom1nn 43714 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ ℕ0 → ((FermatNo‘(𝑁 − 1)) − 1) = (2↑(2↑(𝑁 − 1))))
9321, 92syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) − 1) = (2↑(2↑(𝑁 − 1))))
9491, 93eqtrd 2856 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → -(1 − (FermatNo‘(𝑁 − 1))) = (2↑(2↑(𝑁 − 1))))
9594oveq2d 7172 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · -(1 − (FermatNo‘(𝑁 − 1)))) = (2 · (2↑(2↑(𝑁 − 1)))))
9690, 95eqtr3d 2858 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → -(2 · (1 − (FermatNo‘(𝑁 − 1)))) = (2 · (2↑(2↑(𝑁 − 1)))))
9796oveq2d 7172 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − -(2 · (1 − (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) − (2 · (2↑(2↑(𝑁 − 1))))))
989, 89mulcld 10661 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (1 − (FermatNo‘(𝑁 − 1)))) ∈ ℂ)
9974, 98subnegd 11004 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − -(2 · (1 − (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) + (2 · (1 − (FermatNo‘(𝑁 − 1))))))
1009, 24mulcomd 10662 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (2↑(2↑(𝑁 − 1)))) = ((2↑(2↑(𝑁 − 1))) · 2))
101100oveq2d 7172 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − (2 · (2↑(2↑(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10297, 99, 1013eqtr3d 2864 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) + (2 · (1 − (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10385, 88, 1023eqtrd 2860 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10472, 82, 1033eqtrd 2860 . . . 4 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10567, 69, 1043eqtrrd 2861 . . 3 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)) = (FermatNo‘𝑁))
10660, 63, 1053eqtr3d 2864 . 2 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2))) = (FermatNo‘𝑁))
10716, 44, 1063eqtrrd 2861 1 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870  -cneg 10871  cn 11638  2c2 11693  0cn0 11898  cuz 12244  ...cfz 12893  cexp 13430  cprod 15259  FermatNocfmtno 43709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260  df-fmtno 43710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator