Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec3 Structured version   Visualization version   GIF version

Theorem fmtnorec3 40747
Description: The third recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 2-Aug-2021.)
Assertion
Ref Expression
fmtnorec3 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛))))
Distinct variable group:   𝑛,𝑁

Proof of Theorem fmtnorec3
StepHypRef Expression
1 fzfid 12709 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (0...(𝑁 − 2)) ∈ Fin)
2 elfznn0 12371 . . . . . . . . 9 (𝑛 ∈ (0...(𝑁 − 2)) → 𝑛 ∈ ℕ0)
3 fmtnonn 40730 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℕ)
42, 3syl 17 . . . . . . . 8 (𝑛 ∈ (0...(𝑁 − 2)) → (FermatNo‘𝑛) ∈ ℕ)
54nncnd 10981 . . . . . . 7 (𝑛 ∈ (0...(𝑁 − 2)) → (FermatNo‘𝑛) ∈ ℂ)
65adantl 482 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ (0...(𝑁 − 2))) → (FermatNo‘𝑛) ∈ ℂ)
71, 6fprodcl 14602 . . . . 5 (𝑁 ∈ (ℤ‘2) → ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) ∈ ℂ)
8 2cn 11036 . . . . . 6 2 ∈ ℂ
98a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
10 uznn0sub 11663 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
11 fmtnorec2 40742 . . . . . . 7 ((𝑁 − 2) ∈ ℕ0 → (FermatNo‘((𝑁 − 2) + 1)) = (∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) + 2))
1210, 11syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) = (∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) + 2))
1312eqcomd 2632 . . . . 5 (𝑁 ∈ (ℤ‘2) → (∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) + 2) = (FermatNo‘((𝑁 − 2) + 1)))
147, 9, 13mvlraddd 10389 . . . 4 (𝑁 ∈ (ℤ‘2) → ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛) = ((FermatNo‘((𝑁 − 2) + 1)) − 2))
1514oveq2d 6621 . . 3 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛)) = ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2)))
1615oveq2d 6621 . 2 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛))) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2))))
17 2nn0 11254 . . . . . . . 8 2 ∈ ℕ0
1817a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
19 eluz2nn 11670 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
20 nnm1nn0 11279 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2119, 20syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ0)
2218, 21nn0expcld 12968 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 − 1)) ∈ ℕ0)
2318, 22nn0expcld 12968 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 1))) ∈ ℕ0)
2423nn0cnd 11298 . . . . 5 (𝑁 ∈ (ℤ‘2) → (2↑(2↑(𝑁 − 1))) ∈ ℂ)
25 peano2nn0 11278 . . . . . . . 8 ((𝑁 − 2) ∈ ℕ0 → ((𝑁 − 2) + 1) ∈ ℕ0)
2610, 25syl 17 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) ∈ ℕ0)
27 fmtnonn 40730 . . . . . . 7 (((𝑁 − 2) + 1) ∈ ℕ0 → (FermatNo‘((𝑁 − 2) + 1)) ∈ ℕ)
2826, 27syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) ∈ ℕ)
2928nncnd 10981 . . . . 5 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) ∈ ℂ)
3024, 29, 9subdid 10431 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2)) = (((2↑(2↑(𝑁 − 1))) · (FermatNo‘((𝑁 − 2) + 1))) − ((2↑(2↑(𝑁 − 1))) · 2)))
31 eluzelcn 11643 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
32 ax-1cn 9939 . . . . . . . . . 10 1 ∈ ℂ
3332a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℂ)
34 subsub 10256 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
3534eqcomd 2632 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 2) + 1) = (𝑁 − (2 − 1)))
3631, 9, 33, 35syl3anc 1323 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) = (𝑁 − (2 − 1)))
37 2m1e1 11080 . . . . . . . . 9 (2 − 1) = 1
3837oveq2i 6616 . . . . . . . 8 (𝑁 − (2 − 1)) = (𝑁 − 1)
3936, 38syl6eq 2676 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) = (𝑁 − 1))
4039fveq2d 6154 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 2) + 1)) = (FermatNo‘(𝑁 − 1)))
4140oveq2d 6621 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · (FermatNo‘((𝑁 − 2) + 1))) = ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))))
4241oveq1d 6620 . . . 4 (𝑁 ∈ (ℤ‘2) → (((2↑(2↑(𝑁 − 1))) · (FermatNo‘((𝑁 − 2) + 1))) − ((2↑(2↑(𝑁 − 1))) · 2)) = (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2)))
4330, 42eqtrd 2660 . . 3 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2)) = (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2)))
4443oveq2d 6621 . 2 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ((FermatNo‘((𝑁 − 2) + 1)) − 2))) = ((FermatNo‘(𝑁 − 1)) + (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2))))
45 fmtnonn 40730 . . . . . . . . . 10 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘(𝑁 − 1)) ∈ ℕ)
4621, 45syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) ∈ ℕ)
4746nncnd 10981 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) ∈ ℂ)
4847mulid2d 10003 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (1 · (FermatNo‘(𝑁 − 1))) = (FermatNo‘(𝑁 − 1)))
4948eqcomd 2632 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) = (1 · (FermatNo‘(𝑁 − 1))))
5049oveq1d 6620 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) = ((1 · (FermatNo‘(𝑁 − 1))) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))))
5133, 24, 47adddird 10010 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((1 + (2↑(2↑(𝑁 − 1)))) · (FermatNo‘(𝑁 − 1))) = ((1 · (FermatNo‘(𝑁 − 1))) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))))
5233, 24addcomd 10183 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (1 + (2↑(2↑(𝑁 − 1)))) = ((2↑(2↑(𝑁 − 1))) + 1))
53 fmtno 40728 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘(𝑁 − 1)) = ((2↑(2↑(𝑁 − 1))) + 1))
5421, 53syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (FermatNo‘(𝑁 − 1)) = ((2↑(2↑(𝑁 − 1))) + 1))
5552, 54eqtr4d 2663 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (1 + (2↑(2↑(𝑁 − 1)))) = (FermatNo‘(𝑁 − 1)))
5655oveq1d 6620 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((1 + (2↑(2↑(𝑁 − 1)))) · (FermatNo‘(𝑁 − 1))) = ((FermatNo‘(𝑁 − 1)) · (FermatNo‘(𝑁 − 1))))
5747sqvald 12942 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) = ((FermatNo‘(𝑁 − 1)) · (FermatNo‘(𝑁 − 1))))
5856, 57eqtr4d 2663 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((1 + (2↑(2↑(𝑁 − 1)))) · (FermatNo‘(𝑁 − 1))) = ((FermatNo‘(𝑁 − 1))↑2))
5950, 51, 583eqtr2d 2666 . . . 4 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) = ((FermatNo‘(𝑁 − 1))↑2))
6059oveq1d 6620 . . 3 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) − ((2↑(2↑(𝑁 − 1))) · 2)) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
6124, 47mulcld 10005 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) ∈ ℂ)
6224, 9mulcld 10005 . . . 4 (𝑁 ∈ (ℤ‘2) → ((2↑(2↑(𝑁 − 1))) · 2) ∈ ℂ)
6347, 61, 62addsubassd 10357 . . 3 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1)))) − ((2↑(2↑(𝑁 − 1))) · 2)) = ((FermatNo‘(𝑁 − 1)) + (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2))))
64 npcan1 10400 . . . . . . 7 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
6531, 64syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) + 1) = 𝑁)
6665eqcomd 2632 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 = ((𝑁 − 1) + 1))
6766fveq2d 6154 . . . 4 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = (FermatNo‘((𝑁 − 1) + 1)))
68 fmtnorec1 40736 . . . . 5 ((𝑁 − 1) ∈ ℕ0 → (FermatNo‘((𝑁 − 1) + 1)) = ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1))
6921, 68syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → (FermatNo‘((𝑁 − 1) + 1)) = ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1))
70 binom2sub1 12919 . . . . . . 7 ((FermatNo‘(𝑁 − 1)) ∈ ℂ → (((FermatNo‘(𝑁 − 1)) − 1)↑2) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1))
7147, 70syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1)) − 1)↑2) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1))
7271oveq1d 6620 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1) = (((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1) + 1))
7346nnsqcld 12966 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) ∈ ℕ)
7473nncnd 10981 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1))↑2) ∈ ℂ)
759, 47mulcld 10005 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (FermatNo‘(𝑁 − 1))) ∈ ℂ)
7674, 75subcld 10337 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) ∈ ℂ)
7776, 33, 33addassd 10007 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1) + 1) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (1 + 1)))
78322timesi 11092 . . . . . . . . 9 (2 · 1) = (1 + 1)
7978eqcomi 2635 . . . . . . . 8 (1 + 1) = (2 · 1)
8079a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (1 + 1) = (2 · 1))
8180oveq2d 6621 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (1 + 1)) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)))
8277, 81eqtrd 2660 . . . . 5 (𝑁 ∈ (ℤ‘2) → (((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + 1) + 1) = ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)))
838, 32mulcli 9990 . . . . . . . 8 (2 · 1) ∈ ℂ
8483a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2 · 1) ∈ ℂ)
8574, 75, 84subadd23d 10359 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)) = (((FermatNo‘(𝑁 − 1))↑2) + ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1))))))
869, 33, 47subdid 10431 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (1 − (FermatNo‘(𝑁 − 1)))) = ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1)))))
8786eqcomd 2632 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1)))) = (2 · (1 − (FermatNo‘(𝑁 − 1)))))
8887oveq2d 6621 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) + ((2 · 1) − (2 · (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) + (2 · (1 − (FermatNo‘(𝑁 − 1))))))
8933, 47subcld 10337 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 − (FermatNo‘(𝑁 − 1))) ∈ ℂ)
909, 89mulneg2d 10429 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · -(1 − (FermatNo‘(𝑁 − 1)))) = -(2 · (1 − (FermatNo‘(𝑁 − 1)))))
9133, 47negsubdi2d 10353 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → -(1 − (FermatNo‘(𝑁 − 1))) = ((FermatNo‘(𝑁 − 1)) − 1))
92 fmtnom1nn 40731 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ ℕ0 → ((FermatNo‘(𝑁 − 1)) − 1) = (2↑(2↑(𝑁 − 1))))
9321, 92syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) − 1) = (2↑(2↑(𝑁 − 1))))
9491, 93eqtrd 2660 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → -(1 − (FermatNo‘(𝑁 − 1))) = (2↑(2↑(𝑁 − 1))))
9594oveq2d 6621 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2 · -(1 − (FermatNo‘(𝑁 − 1)))) = (2 · (2↑(2↑(𝑁 − 1)))))
9690, 95eqtr3d 2662 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → -(2 · (1 − (FermatNo‘(𝑁 − 1)))) = (2 · (2↑(2↑(𝑁 − 1)))))
9796oveq2d 6621 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − -(2 · (1 − (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) − (2 · (2↑(2↑(𝑁 − 1))))))
989, 89mulcld 10005 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (1 − (FermatNo‘(𝑁 − 1)))) ∈ ℂ)
9974, 98subnegd 10344 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − -(2 · (1 − (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) + (2 · (1 − (FermatNo‘(𝑁 − 1))))))
1009, 24mulcomd 10006 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 · (2↑(2↑(𝑁 − 1)))) = ((2↑(2↑(𝑁 − 1))) · 2))
101100oveq2d 6621 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − (2 · (2↑(2↑(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10297, 99, 1013eqtr3d 2668 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) + (2 · (1 − (FermatNo‘(𝑁 − 1))))) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10385, 88, 1023eqtrd 2664 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1))↑2) − (2 · (FermatNo‘(𝑁 − 1)))) + (2 · 1)) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10472, 82, 1033eqtrd 2664 . . . 4 (𝑁 ∈ (ℤ‘2) → ((((FermatNo‘(𝑁 − 1)) − 1)↑2) + 1) = (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)))
10567, 69, 1043eqtrrd 2665 . . 3 (𝑁 ∈ (ℤ‘2) → (((FermatNo‘(𝑁 − 1))↑2) − ((2↑(2↑(𝑁 − 1))) · 2)) = (FermatNo‘𝑁))
10660, 63, 1053eqtr3d 2668 . 2 (𝑁 ∈ (ℤ‘2) → ((FermatNo‘(𝑁 − 1)) + (((2↑(2↑(𝑁 − 1))) · (FermatNo‘(𝑁 − 1))) − ((2↑(2↑(𝑁 − 1))) · 2))) = (FermatNo‘𝑁))
10716, 44, 1063eqtrrd 2665 1 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1992  cfv 5850  (class class class)co 6605  cc 9879  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886  cmin 10211  -cneg 10212  cn 10965  2c2 11015  0cn0 11237  cuz 11631  ...cfz 12265  cexp 12797  cprod 14555  FermatNocfmtno 40726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-oi 8360  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-fz 12266  df-fzo 12404  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-prod 14556  df-fmtno 40727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator