MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumm1 Structured version   Visualization version   GIF version

Theorem fsumm1 15106
Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
fsumm1.1 (𝜑𝑁 ∈ (ℤ𝑀))
fsumm1.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumm1.3 (𝑘 = 𝑁𝐴 = 𝐵)
Assertion
Ref Expression
fsumm1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵))
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fsumm1
StepHypRef Expression
1 fsumm1.1 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzelz 12254 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
31, 2syl 17 . . . . . 6 (𝜑𝑁 ∈ ℤ)
4 fzsn 12950 . . . . . 6 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
53, 4syl 17 . . . . 5 (𝜑 → (𝑁...𝑁) = {𝑁})
65ineq2d 4189 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ((𝑀...(𝑁 − 1)) ∩ {𝑁}))
73zred 12088 . . . . . 6 (𝜑𝑁 ∈ ℝ)
87ltm1d 11572 . . . . 5 (𝜑 → (𝑁 − 1) < 𝑁)
9 fzdisj 12935 . . . . 5 ((𝑁 − 1) < 𝑁 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ∅)
108, 9syl 17 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ∅)
116, 10eqtr3d 2858 . . 3 (𝜑 → ((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅)
12 eluzel2 12249 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
131, 12syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
14 peano2zm 12026 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
1513, 14syl 17 . . . . . . 7 (𝜑 → (𝑀 − 1) ∈ ℤ)
1613zcnd 12089 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
17 ax-1cn 10595 . . . . . . . . . 10 1 ∈ ℂ
18 npcan 10895 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀)
1916, 17, 18sylancl 588 . . . . . . . . 9 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
2019fveq2d 6674 . . . . . . . 8 (𝜑 → (ℤ‘((𝑀 − 1) + 1)) = (ℤ𝑀))
211, 20eleqtrrd 2916 . . . . . . 7 (𝜑𝑁 ∈ (ℤ‘((𝑀 − 1) + 1)))
22 eluzp1m1 12269 . . . . . . 7 (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
2315, 21, 22syl2anc 586 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
24 fzsuc2 12966 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))) → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
2513, 23, 24syl2anc 586 . . . . 5 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
263zcnd 12089 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
27 npcan 10895 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
2826, 17, 27sylancl 588 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
2928oveq2d 7172 . . . . 5 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
3025, 29eqtr3d 2858 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = (𝑀...𝑁))
3128sneqd 4579 . . . . 5 (𝜑 → {((𝑁 − 1) + 1)} = {𝑁})
3231uneq2d 4139 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
3330, 32eqtr3d 2858 . . 3 (𝜑 → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
34 fzfid 13342 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
35 fsumm1.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
3611, 33, 34, 35fsumsplit 15097 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ {𝑁}𝐴))
37 fsumm1.3 . . . . . 6 (𝑘 = 𝑁𝐴 = 𝐵)
3837eleq1d 2897 . . . . 5 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
3935ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
40 eluzfz2 12916 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
411, 40syl 17 . . . . 5 (𝜑𝑁 ∈ (𝑀...𝑁))
4238, 39, 41rspcdva 3625 . . . 4 (𝜑𝐵 ∈ ℂ)
4337sumsn 15101 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑁}𝐴 = 𝐵)
441, 42, 43syl2anc 586 . . 3 (𝜑 → Σ𝑘 ∈ {𝑁}𝐴 = 𝐵)
4544oveq2d 7172 . 2 (𝜑 → (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ {𝑁}𝐴) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵))
4636, 45eqtrd 2856 1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cun 3934  cin 3935  c0 4291  {csn 4567   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  1c1 10538   + caddc 10540   < clt 10675  cmin 10870  cz 11982  cuz 12244  ...cfz 12893  Σcsu 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043
This theorem is referenced by:  fzosump1  15107  fsump1  15111  telfsumo  15157  fsumparts  15161  binom1dif  15188  pwdif  15223  bpolysum  15407  bpolydiflem  15408  pwp1fsum  15742  prmreclem4  16255  ovolicc2lem4  24121  dvfsumlem1  24623  abelthlem6  25024  log2ublem2  25525  harmonicbnd4  25588  ftalem1  25650  ftalem5  25654  chpp1  25732  1sgmprm  25775  chtublem  25787  logdivbnd  26132  pntrlog2bndlem1  26153  knoppndvlem15  33865  mettrifi  35047  fzosumm1  39146  stoweidlem17  42322  nnsum4primeseven  43985  nnsum4primesevenALTV  43986
  Copyright terms: Public domain W3C validator