MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumm1 Structured version   Visualization version   GIF version

Theorem fsumm1 14405
Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
fsumm1.1 (𝜑𝑁 ∈ (ℤ𝑀))
fsumm1.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumm1.3 (𝑘 = 𝑁𝐴 = 𝐵)
Assertion
Ref Expression
fsumm1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵))
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fsumm1
StepHypRef Expression
1 fsumm1.1 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzelz 11641 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
31, 2syl 17 . . . . . 6 (𝜑𝑁 ∈ ℤ)
4 fzsn 12322 . . . . . 6 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
53, 4syl 17 . . . . 5 (𝜑 → (𝑁...𝑁) = {𝑁})
65ineq2d 3797 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ((𝑀...(𝑁 − 1)) ∩ {𝑁}))
73zred 11426 . . . . . 6 (𝜑𝑁 ∈ ℝ)
87ltm1d 10901 . . . . 5 (𝜑 → (𝑁 − 1) < 𝑁)
9 fzdisj 12307 . . . . 5 ((𝑁 − 1) < 𝑁 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ∅)
108, 9syl 17 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ∅)
116, 10eqtr3d 2662 . . 3 (𝜑 → ((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅)
12 eluzel2 11636 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
131, 12syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
14 peano2zm 11365 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
1513, 14syl 17 . . . . . . 7 (𝜑 → (𝑀 − 1) ∈ ℤ)
1613zcnd 11427 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
17 ax-1cn 9939 . . . . . . . . . 10 1 ∈ ℂ
18 npcan 10235 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀)
1916, 17, 18sylancl 693 . . . . . . . . 9 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
2019fveq2d 6154 . . . . . . . 8 (𝜑 → (ℤ‘((𝑀 − 1) + 1)) = (ℤ𝑀))
211, 20eleqtrrd 2707 . . . . . . 7 (𝜑𝑁 ∈ (ℤ‘((𝑀 − 1) + 1)))
22 eluzp1m1 11655 . . . . . . 7 (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
2315, 21, 22syl2anc 692 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
24 fzsuc2 12337 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))) → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
2513, 23, 24syl2anc 692 . . . . 5 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
263zcnd 11427 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
27 npcan 10235 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
2826, 17, 27sylancl 693 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
2928oveq2d 6621 . . . . 5 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
3025, 29eqtr3d 2662 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = (𝑀...𝑁))
3128sneqd 4165 . . . . 5 (𝜑 → {((𝑁 − 1) + 1)} = {𝑁})
3231uneq2d 3750 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
3330, 32eqtr3d 2662 . . 3 (𝜑 → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
34 fzfid 12709 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
35 fsumm1.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
3611, 33, 34, 35fsumsplit 14399 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ {𝑁}𝐴))
37 eluzfz2 12288 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
381, 37syl 17 . . . . 5 (𝜑𝑁 ∈ (𝑀...𝑁))
3935ralrimiva 2965 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
40 fsumm1.3 . . . . . . 7 (𝑘 = 𝑁𝐴 = 𝐵)
4140eleq1d 2688 . . . . . 6 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
4241rspcv 3296 . . . . 5 (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → 𝐵 ∈ ℂ))
4338, 39, 42sylc 65 . . . 4 (𝜑𝐵 ∈ ℂ)
4440sumsn 14400 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑁}𝐴 = 𝐵)
451, 43, 44syl2anc 692 . . 3 (𝜑 → Σ𝑘 ∈ {𝑁}𝐴 = 𝐵)
4645oveq2d 6621 . 2 (𝜑 → (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ {𝑁}𝐴) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵))
4736, 46eqtrd 2660 1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  wral 2912  cun 3558  cin 3559  c0 3896  {csn 4153   class class class wbr 4618  cfv 5850  (class class class)co 6605  cc 9879  1c1 9882   + caddc 9884   < clt 10019  cmin 10211  cz 11322  cuz 11631  ...cfz 12265  Σcsu 14345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-oi 8360  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-fz 12266  df-fzo 12404  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-sum 14346
This theorem is referenced by:  fzosump1  14406  fsump1  14410  telfsumo  14456  fsumparts  14460  binom1dif  14485  bpolysum  14704  bpolydiflem  14705  pwp1fsum  15033  prmreclem4  15542  ovolicc2lem4  23190  dvfsumlem1  23688  abelthlem6  24089  log2ublem2  24569  harmonicbnd4  24632  ftalem1  24694  ftalem5  24698  chpp1  24776  1sgmprm  24819  chtublem  24831  logdivbnd  25140  pntrlog2bndlem1  25161  knoppndvlem15  32151  mettrifi  33171  stoweidlem17  39528  pwdif  40788  nnsum4primeseven  40965  nnsum4primesevenALTV  40966
  Copyright terms: Public domain W3C validator