Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtno4prmfac Structured version   Visualization version   GIF version

Theorem fmtno4prmfac 43754
Description: If P was a (prime) factor of the fourth Fermat number less than the square root of the fourth Fermat number, it would be either 65 or 129 or 193. (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fmtno4prmfac ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))

Proof of Theorem fmtno4prmfac
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2z 12015 . . . . 5 2 ∈ ℤ
2 4z 12017 . . . . 5 4 ∈ ℤ
3 2re 11712 . . . . . 6 2 ∈ ℝ
4 4re 11722 . . . . . 6 4 ∈ ℝ
5 2lt4 11813 . . . . . 6 2 < 4
63, 4, 5ltleii 10763 . . . . 5 2 ≤ 4
7 eluz2 12250 . . . . 5 (4 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ≤ 4))
81, 2, 6, 7mpbir3an 1337 . . . 4 4 ∈ (ℤ‘2)
9 fmtnoprmfac2 43749 . . . 4 ((4 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(4 + 2))) + 1))
108, 9mp3an1 1444 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(4 + 2))) + 1))
11 elnnuz 12283 . . . . . . 7 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
12 4nn 11721 . . . . . . . . . 10 4 ∈ ℕ
13 nnuz 12282 . . . . . . . . . 10 ℕ = (ℤ‘1)
1412, 13eleqtri 2911 . . . . . . . . 9 4 ∈ (ℤ‘1)
15 fzouzsplit 13073 . . . . . . . . 9 (4 ∈ (ℤ‘1) → (ℤ‘1) = ((1..^4) ∪ (ℤ‘4)))
1614, 15ax-mp 5 . . . . . . . 8 (ℤ‘1) = ((1..^4) ∪ (ℤ‘4))
1716eleq2i 2904 . . . . . . 7 (𝑘 ∈ (ℤ‘1) ↔ 𝑘 ∈ ((1..^4) ∪ (ℤ‘4)))
18 elun 4125 . . . . . . . 8 (𝑘 ∈ ((1..^4) ∪ (ℤ‘4)) ↔ (𝑘 ∈ (1..^4) ∨ 𝑘 ∈ (ℤ‘4)))
19 fzo1to4tp 13126 . . . . . . . . . . 11 (1..^4) = {1, 2, 3}
2019eleq2i 2904 . . . . . . . . . 10 (𝑘 ∈ (1..^4) ↔ 𝑘 ∈ {1, 2, 3})
21 vex 3497 . . . . . . . . . . 11 𝑘 ∈ V
2221eltp 4626 . . . . . . . . . 10 (𝑘 ∈ {1, 2, 3} ↔ (𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3))
2320, 22bitri 277 . . . . . . . . 9 (𝑘 ∈ (1..^4) ↔ (𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3))
2423orbi1i 910 . . . . . . . 8 ((𝑘 ∈ (1..^4) ∨ 𝑘 ∈ (ℤ‘4)) ↔ ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)))
2518, 24bitri 277 . . . . . . 7 (𝑘 ∈ ((1..^4) ∪ (ℤ‘4)) ↔ ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)))
2611, 17, 253bitri 299 . . . . . 6 (𝑘 ∈ ℕ ↔ ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)))
27 4p2e6 11791 . . . . . . . . . . . . 13 (4 + 2) = 6
2827oveq2i 7167 . . . . . . . . . . . 12 (2↑(4 + 2)) = (2↑6)
29 2exp6 16422 . . . . . . . . . . . 12 (2↑6) = 64
3028, 29eqtri 2844 . . . . . . . . . . 11 (2↑(4 + 2)) = 64
3130oveq2i 7167 . . . . . . . . . 10 (𝑘 · (2↑(4 + 2))) = (𝑘 · 64)
3231oveq1i 7166 . . . . . . . . 9 ((𝑘 · (2↑(4 + 2))) + 1) = ((𝑘 · 64) + 1)
3332eqeq2i 2834 . . . . . . . 8 (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) ↔ 𝑃 = ((𝑘 · 64) + 1))
34 simpl 485 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 1) → 𝑃 = ((𝑘 · 64) + 1))
35 oveq1 7163 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 1 → (𝑘 · 64) = (1 · 64))
36 6nn0 11919 . . . . . . . . . . . . . . . . . . . . . 22 6 ∈ ℕ0
37 4nn0 11917 . . . . . . . . . . . . . . . . . . . . . 22 4 ∈ ℕ0
3836, 37deccl 12114 . . . . . . . . . . . . . . . . . . . . 21 64 ∈ ℕ0
3938nn0cni 11910 . . . . . . . . . . . . . . . . . . . 20 64 ∈ ℂ
4039mulid2i 10646 . . . . . . . . . . . . . . . . . . 19 (1 · 64) = 64
4135, 40syl6eq 2872 . . . . . . . . . . . . . . . . . 18 (𝑘 = 1 → (𝑘 · 64) = 64)
4241oveq1d 7171 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → ((𝑘 · 64) + 1) = (64 + 1))
43 4p1e5 11784 . . . . . . . . . . . . . . . . . 18 (4 + 1) = 5
44 eqid 2821 . . . . . . . . . . . . . . . . . 18 64 = 64
4536, 37, 43, 44decsuc 12130 . . . . . . . . . . . . . . . . 17 (64 + 1) = 65
4642, 45syl6eq 2872 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → ((𝑘 · 64) + 1) = 65)
4746adantl 484 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 1) → ((𝑘 · 64) + 1) = 65)
4834, 47eqtrd 2856 . . . . . . . . . . . . . 14 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 1) → 𝑃 = 65)
4948ex 415 . . . . . . . . . . . . 13 (𝑃 = ((𝑘 · 64) + 1) → (𝑘 = 1 → 𝑃 = 65))
50 simpl 485 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 2) → 𝑃 = ((𝑘 · 64) + 1))
51 oveq1 7163 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 2 → (𝑘 · 64) = (2 · 64))
52 2nn0 11915 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ0
53 6cn 11729 . . . . . . . . . . . . . . . . . . . . . 22 6 ∈ ℂ
54 2cn 11713 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
55 6t2e12 12203 . . . . . . . . . . . . . . . . . . . . . 22 (6 · 2) = 12
5653, 54, 55mulcomli 10650 . . . . . . . . . . . . . . . . . . . . 21 (2 · 6) = 12
5756eqcomi 2830 . . . . . . . . . . . . . . . . . . . 20 12 = (2 · 6)
58 4cn 11723 . . . . . . . . . . . . . . . . . . . . . 22 4 ∈ ℂ
59 4t2e8 11806 . . . . . . . . . . . . . . . . . . . . . 22 (4 · 2) = 8
6058, 54, 59mulcomli 10650 . . . . . . . . . . . . . . . . . . . . 21 (2 · 4) = 8
6160eqcomi 2830 . . . . . . . . . . . . . . . . . . . 20 8 = (2 · 4)
6236, 37, 52, 57, 61decmul10add 12168 . . . . . . . . . . . . . . . . . . 19 (2 · 64) = (120 + 8)
6351, 62syl6eq 2872 . . . . . . . . . . . . . . . . . 18 (𝑘 = 2 → (𝑘 · 64) = (120 + 8))
6463oveq1d 7171 . . . . . . . . . . . . . . . . 17 (𝑘 = 2 → ((𝑘 · 64) + 1) = ((120 + 8) + 1))
65 1nn0 11914 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
6665, 52deccl 12114 . . . . . . . . . . . . . . . . . 18 12 ∈ ℕ0
67 8nn0 11921 . . . . . . . . . . . . . . . . . 18 8 ∈ ℕ0
68 8p1e9 11788 . . . . . . . . . . . . . . . . . 18 (8 + 1) = 9
69 0nn0 11913 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℕ0
70 eqid 2821 . . . . . . . . . . . . . . . . . . 19 120 = 120
71 8cn 11735 . . . . . . . . . . . . . . . . . . . 20 8 ∈ ℂ
7271addid2i 10828 . . . . . . . . . . . . . . . . . . 19 (0 + 8) = 8
7366, 69, 67, 70, 72decaddi 12159 . . . . . . . . . . . . . . . . . 18 (120 + 8) = 128
7466, 67, 68, 73decsuc 12130 . . . . . . . . . . . . . . . . 17 ((120 + 8) + 1) = 129
7564, 74syl6eq 2872 . . . . . . . . . . . . . . . 16 (𝑘 = 2 → ((𝑘 · 64) + 1) = 129)
7675adantl 484 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 2) → ((𝑘 · 64) + 1) = 129)
7750, 76eqtrd 2856 . . . . . . . . . . . . . 14 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 2) → 𝑃 = 129)
7877ex 415 . . . . . . . . . . . . 13 (𝑃 = ((𝑘 · 64) + 1) → (𝑘 = 2 → 𝑃 = 129))
79 simpl 485 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 3) → 𝑃 = ((𝑘 · 64) + 1))
80 oveq1 7163 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 3 → (𝑘 · 64) = (3 · 64))
81 3nn0 11916 . . . . . . . . . . . . . . . . . . . 20 3 ∈ ℕ0
82 6t3e18 12204 . . . . . . . . . . . . . . . . . . . . 21 (6 · 3) = 18
83 3cn 11719 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℂ
8453, 83mulcomi 10649 . . . . . . . . . . . . . . . . . . . . 21 (6 · 3) = (3 · 6)
8582, 84eqtr3i 2846 . . . . . . . . . . . . . . . . . . . 20 18 = (3 · 6)
86 4t3e12 12197 . . . . . . . . . . . . . . . . . . . . 21 (4 · 3) = 12
8758, 83mulcomi 10649 . . . . . . . . . . . . . . . . . . . . 21 (4 · 3) = (3 · 4)
8886, 87eqtr3i 2846 . . . . . . . . . . . . . . . . . . . 20 12 = (3 · 4)
8936, 37, 81, 85, 88decmul10add 12168 . . . . . . . . . . . . . . . . . . 19 (3 · 64) = (180 + 12)
9080, 89syl6eq 2872 . . . . . . . . . . . . . . . . . 18 (𝑘 = 3 → (𝑘 · 64) = (180 + 12))
9190oveq1d 7171 . . . . . . . . . . . . . . . . 17 (𝑘 = 3 → ((𝑘 · 64) + 1) = ((180 + 12) + 1))
92 9nn0 11922 . . . . . . . . . . . . . . . . . . 19 9 ∈ ℕ0
9365, 92deccl 12114 . . . . . . . . . . . . . . . . . 18 19 ∈ ℕ0
94 2p1e3 11780 . . . . . . . . . . . . . . . . . 18 (2 + 1) = 3
9565, 67deccl 12114 . . . . . . . . . . . . . . . . . . 19 18 ∈ ℕ0
96 eqid 2821 . . . . . . . . . . . . . . . . . . 19 180 = 180
97 eqid 2821 . . . . . . . . . . . . . . . . . . 19 12 = 12
98 eqid 2821 . . . . . . . . . . . . . . . . . . . 20 18 = 18
9965, 67, 68, 98decsuc 12130 . . . . . . . . . . . . . . . . . . 19 (18 + 1) = 19
10054addid2i 10828 . . . . . . . . . . . . . . . . . . 19 (0 + 2) = 2
10195, 69, 65, 52, 96, 97, 99, 100decadd 12153 . . . . . . . . . . . . . . . . . 18 (180 + 12) = 192
10293, 52, 94, 101decsuc 12130 . . . . . . . . . . . . . . . . 17 ((180 + 12) + 1) = 193
10391, 102syl6eq 2872 . . . . . . . . . . . . . . . 16 (𝑘 = 3 → ((𝑘 · 64) + 1) = 193)
104103adantl 484 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 3) → ((𝑘 · 64) + 1) = 193)
10579, 104eqtrd 2856 . . . . . . . . . . . . . 14 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 3) → 𝑃 = 193)
106105ex 415 . . . . . . . . . . . . 13 (𝑃 = ((𝑘 · 64) + 1) → (𝑘 = 3 → 𝑃 = 193))
10749, 78, 1063orim123d 1440 . . . . . . . . . . . 12 (𝑃 = ((𝑘 · 64) + 1) → ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
108107a1i 11 . . . . . . . . . . 11 (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = ((𝑘 · 64) + 1) → ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
109108com13 88 . . . . . . . . . 10 ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
110 fmtno4sqrt 43753 . . . . . . . . . . . . 13 (⌊‘(√‘(FermatNo‘4))) = 256
111110breq2i 5074 . . . . . . . . . . . 12 (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) ↔ 𝑃256)
112 breq1 5069 . . . . . . . . . . . . . 14 (𝑃 = ((𝑘 · 64) + 1) → (𝑃256 ↔ ((𝑘 · 64) + 1) ≤ 256))
113112adantl 484 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (𝑃256 ↔ ((𝑘 · 64) + 1) ≤ 256))
114 eluz2 12250 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘))
115 6t4e24 12205 . . . . . . . . . . . . . . . . . . . . . . 23 (6 · 4) = 24
11653, 58, 115mulcomli 10650 . . . . . . . . . . . . . . . . . . . . . 22 (4 · 6) = 24
11752, 37, 43, 116decsuc 12130 . . . . . . . . . . . . . . . . . . . . 21 ((4 · 6) + 1) = 25
118 4t4e16 12198 . . . . . . . . . . . . . . . . . . . . 21 (4 · 4) = 16
11937, 36, 37, 44, 36, 65, 117, 118decmul2c 12165 . . . . . . . . . . . . . . . . . . . 20 (4 · 64) = 256
120 zre 11986 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
12138nn0rei 11909 . . . . . . . . . . . . . . . . . . . . . . . 24 64 ∈ ℝ
12236, 12decnncl 12119 . . . . . . . . . . . . . . . . . . . . . . . . 25 64 ∈ ℕ
123122nngt0i 11677 . . . . . . . . . . . . . . . . . . . . . . . 24 0 < 64
124121, 123pm3.2i 473 . . . . . . . . . . . . . . . . . . . . . . 23 (64 ∈ ℝ ∧ 0 < 64)
125124a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → (64 ∈ ℝ ∧ 0 < 64))
126 lemul1 11492 . . . . . . . . . . . . . . . . . . . . . 22 ((4 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (64 ∈ ℝ ∧ 0 < 64)) → (4 ≤ 𝑘 ↔ (4 · 64) ≤ (𝑘 · 64)))
1274, 120, 125, 126mp3an2i 1462 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (4 ≤ 𝑘 ↔ (4 · 64) ≤ (𝑘 · 64)))
128127biimpa 479 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → (4 · 64) ≤ (𝑘 · 64))
129119, 128eqbrtrrid 5102 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → 256 ≤ (𝑘 · 64))
130 5nn0 11918 . . . . . . . . . . . . . . . . . . . . . . 23 5 ∈ ℕ0
13152, 130deccl 12114 . . . . . . . . . . . . . . . . . . . . . 22 25 ∈ ℕ0
132131, 36deccl 12114 . . . . . . . . . . . . . . . . . . . . 21 256 ∈ ℕ0
133132nn0zi 12008 . . . . . . . . . . . . . . . . . . . 20 256 ∈ ℤ
134 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 𝑘 ∈ ℤ)
13538nn0zi 12008 . . . . . . . . . . . . . . . . . . . . . . 23 64 ∈ ℤ
136135a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 64 ∈ ℤ)
137134, 136zmulcld 12094 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (𝑘 · 64) ∈ ℤ)
138137adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → (𝑘 · 64) ∈ ℤ)
139 zleltp1 12034 . . . . . . . . . . . . . . . . . . . 20 ((256 ∈ ℤ ∧ (𝑘 · 64) ∈ ℤ) → (256 ≤ (𝑘 · 64) ↔ 256 < ((𝑘 · 64) + 1)))
140133, 138, 139sylancr 589 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → (256 ≤ (𝑘 · 64) ↔ 256 < ((𝑘 · 64) + 1)))
141129, 140mpbid 234 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → 256 < ((𝑘 · 64) + 1))
1421413adant1 1126 . . . . . . . . . . . . . . . . 17 ((4 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → 256 < ((𝑘 · 64) + 1))
143114, 142sylbi 219 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘4) → 256 < ((𝑘 · 64) + 1))
144132nn0rei 11909 . . . . . . . . . . . . . . . . . 18 256 ∈ ℝ
145144a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘4) → 256 ∈ ℝ)
146 eluzelre 12255 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘4) → 𝑘 ∈ ℝ)
147121a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘4) → 64 ∈ ℝ)
148146, 147remulcld 10671 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘4) → (𝑘 · 64) ∈ ℝ)
149 peano2re 10813 . . . . . . . . . . . . . . . . . 18 ((𝑘 · 64) ∈ ℝ → ((𝑘 · 64) + 1) ∈ ℝ)
150148, 149syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘4) → ((𝑘 · 64) + 1) ∈ ℝ)
151145, 150ltnled 10787 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘4) → (256 < ((𝑘 · 64) + 1) ↔ ¬ ((𝑘 · 64) + 1) ≤ 256))
152143, 151mpbid 234 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘4) → ¬ ((𝑘 · 64) + 1) ≤ 256)
153152pm2.21d 121 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ‘4) → (((𝑘 · 64) + 1) ≤ 256 → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
154153adantr 483 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (((𝑘 · 64) + 1) ≤ 256 → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
155113, 154sylbid 242 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (𝑃256 → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
156111, 155syl5bi 244 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
157156ex 415 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘4) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
158109, 157jaoi 853 . . . . . . . . 9 (((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
159158adantr 483 . . . . . . . 8 ((((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4))) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
16033, 159syl5bi 244 . . . . . . 7 ((((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4))) → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
161160ex 415 . . . . . 6 (((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) → ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))))
16226, 161sylbi 219 . . . . 5 (𝑘 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))))
163162com12 32 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑘 ∈ ℕ → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))))
164163rexlimdv 3283 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
16510, 164mpd 15 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
1661653impia 1113 1 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wrex 3139  cun 3934  {ctp 4571   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cn 11638  2c2 11693  3c3 11694  4c4 11695  5c5 11696  6c6 11697  8c8 11699  9c9 11700  cz 11982  cdc 12099  cuz 12244  ..^cfzo 13034  cfl 13161  cexp 13430  csqrt 14592  cdvds 15607  cprime 16015  FermatNocfmtno 43709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-ioo 12743  df-ico 12745  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260  df-dvds 15608  df-gcd 15844  df-prm 16016  df-odz 16102  df-phi 16103  df-pc 16174  df-lgs 25871  df-fmtno 43710
This theorem is referenced by:  fmtno4prmfac193  43755
  Copyright terms: Public domain W3C validator