MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlimcnp Structured version   Visualization version   GIF version

Theorem xrlimcnp 24612
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the corresponding extended real function at +∞. Since any 𝑟 limit can be written in the form on the left side of the implication, this shows that real limits are a special case of topological continuity at a point. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
xrlimcnp.a (𝜑𝐴 = (𝐵 ∪ {+∞}))
xrlimcnp.b (𝜑𝐵 ⊆ ℝ)
xrlimcnp.r ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
xrlimcnp.c (𝑥 = +∞ → 𝑅 = 𝐶)
xrlimcnp.j 𝐽 = (TopOpen‘ℂfld)
xrlimcnp.k 𝐾 = ((ordTop‘ ≤ ) ↾t 𝐴)
Assertion
Ref Expression
xrlimcnp (𝜑 → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝑅(𝑥)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem xrlimcnp
Dummy variables 𝑘 𝑟 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlimcnp.r . . . . 5 ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
2 eqid 2621 . . . . 5 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
31, 2fmptd 6346 . . . 4 (𝜑 → (𝑥𝐴𝑅):𝐴⟶ℂ)
43adantr 481 . . 3 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → (𝑥𝐴𝑅):𝐴⟶ℂ)
5 ssun2 3760 . . . . . . . . . 10 {+∞} ⊆ (𝐵 ∪ {+∞})
6 pnfex 10045 . . . . . . . . . . 11 +∞ ∈ V
76snid 4184 . . . . . . . . . 10 +∞ ∈ {+∞}
85, 7sselii 3584 . . . . . . . . 9 +∞ ∈ (𝐵 ∪ {+∞})
9 xrlimcnp.a . . . . . . . . 9 (𝜑𝐴 = (𝐵 ∪ {+∞}))
108, 9syl5eleqr 2705 . . . . . . . 8 (𝜑 → +∞ ∈ 𝐴)
111ralrimiva 2961 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 𝑅 ∈ ℂ)
12 xrlimcnp.c . . . . . . . . . . 11 (𝑥 = +∞ → 𝑅 = 𝐶)
1312eleq1d 2683 . . . . . . . . . 10 (𝑥 = +∞ → (𝑅 ∈ ℂ ↔ 𝐶 ∈ ℂ))
1413rspcv 3294 . . . . . . . . 9 (+∞ ∈ 𝐴 → (∀𝑥𝐴 𝑅 ∈ ℂ → 𝐶 ∈ ℂ))
1510, 11, 14sylc 65 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
1612, 2fvmptg 6242 . . . . . . . 8 ((+∞ ∈ 𝐴𝐶 ∈ ℂ) → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
1710, 15, 16syl2anc 692 . . . . . . 7 (𝜑 → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
1817ad2antrr 761 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
1918eleq1d 2683 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦𝐶𝑦))
20 cnxmet 22499 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
21 xrlimcnp.j . . . . . . . . . 10 𝐽 = (TopOpen‘ℂfld)
2221cnfldtopn 22508 . . . . . . . . 9 𝐽 = (MetOpen‘(abs ∘ − ))
2322mopni2 22221 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦𝐽𝐶𝑦) → ∃𝑟 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)
2420, 23mp3an1 1408 . . . . . . 7 ((𝑦𝐽𝐶𝑦) → ∃𝑟 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)
25 ssun1 3759 . . . . . . . . . . . . 13 𝐵 ⊆ (𝐵 ∪ {+∞})
2625, 9syl5sseqr 3638 . . . . . . . . . . . 12 (𝜑𝐵𝐴)
27 ssralv 3650 . . . . . . . . . . . 12 (𝐵𝐴 → (∀𝑥𝐴 𝑅 ∈ ℂ → ∀𝑥𝐵 𝑅 ∈ ℂ))
2826, 11, 27sylc 65 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐵 𝑅 ∈ ℂ)
2928ad2antrr 761 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → ∀𝑥𝐵 𝑅 ∈ ℂ)
30 simprl 793 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → 𝑟 ∈ ℝ+)
31 simplr 791 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → (𝑥𝐵𝑅) ⇝𝑟 𝐶)
3229, 30, 31rlimi 14186 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
33 letop 20933 . . . . . . . . . . . . . . 15 (ordTop‘ ≤ ) ∈ Top
3433a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (ordTop‘ ≤ ) ∈ Top)
35 xrlimcnp.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ⊆ ℝ)
36 ressxr 10035 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
3735, 36syl6ss 3599 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ⊆ ℝ*)
38 pnfxr 10044 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → +∞ ∈ ℝ*)
4039snssd 4314 . . . . . . . . . . . . . . . . . 18 (𝜑 → {+∞} ⊆ ℝ*)
4137, 40unssd 3772 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 ∪ {+∞}) ⊆ ℝ*)
429, 41eqsstrd 3623 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ⊆ ℝ*)
43 xrex 11781 . . . . . . . . . . . . . . . . 17 * ∈ V
4443ssex 4767 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℝ*𝐴 ∈ V)
4542, 44syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ V)
4645ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐴 ∈ V)
47 iocpnfordt 20942 . . . . . . . . . . . . . . 15 (𝑘(,]+∞) ∈ (ordTop‘ ≤ )
4847a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (𝑘(,]+∞) ∈ (ordTop‘ ≤ ))
49 elrestr 16021 . . . . . . . . . . . . . 14 (((ordTop‘ ≤ ) ∈ Top ∧ 𝐴 ∈ V ∧ (𝑘(,]+∞) ∈ (ordTop‘ ≤ )) → ((𝑘(,]+∞) ∩ 𝐴) ∈ ((ordTop‘ ≤ ) ↾t 𝐴))
5034, 46, 48, 49syl3anc 1323 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ∈ ((ordTop‘ ≤ ) ↾t 𝐴))
51 xrlimcnp.k . . . . . . . . . . . . 13 𝐾 = ((ordTop‘ ≤ ) ↾t 𝐴)
5250, 51syl6eleqr 2709 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ∈ 𝐾)
53 simprl 793 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑘 ∈ ℝ)
5453rexrd 10041 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑘 ∈ ℝ*)
5538a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ ℝ*)
56 ltpnf 11906 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℝ → 𝑘 < +∞)
5753, 56syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑘 < +∞)
58 ubioc1 12177 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑘 < +∞) → +∞ ∈ (𝑘(,]+∞))
5954, 55, 57, 58syl3anc 1323 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ (𝑘(,]+∞))
6010ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ 𝐴)
6159, 60elind 3781 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ ((𝑘(,]+∞) ∩ 𝐴))
62 simplr 791 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ)
6362rexrd 10041 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ*)
64 elioc1 12167 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝑘(,]+∞) ↔ (𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞)))
6563, 38, 64sylancl 693 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑘(,]+∞) ↔ (𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞)))
66 simp2 1060 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞) → 𝑘 < 𝑥)
6765, 66syl6bi 243 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑘(,]+∞) → 𝑘 < 𝑥))
6835ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) → 𝐵 ⊆ ℝ)
6968sselda 3587 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑥 ∈ ℝ)
70 ltle 10078 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 < 𝑥𝑘𝑥))
7162, 69, 70syl2anc 692 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑘 < 𝑥𝑘𝑥))
7267, 71syld 47 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑘(,]+∞) → 𝑘𝑥))
7320a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (abs ∘ − ) ∈ (∞Met‘ℂ))
74 simprl 793 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → 𝑟 ∈ ℝ+)
7574ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑟 ∈ ℝ+)
76 rpxr 11792 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
7775, 76syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑟 ∈ ℝ*)
7815ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝐶 ∈ ℂ)
7928ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) → ∀𝑥𝐵 𝑅 ∈ ℂ)
8079r19.21bi 2927 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑅 ∈ ℂ)
81 elbl3 22120 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝐶 ∈ ℂ ∧ 𝑅 ∈ ℂ)) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐶) < 𝑟))
8273, 77, 78, 80, 81syl22anc 1324 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐶) < 𝑟))
83 eqid 2621 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (abs ∘ − ) = (abs ∘ − )
8483cnmetdval 22497 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
8580, 78, 84syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
8685breq1d 4628 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → ((𝑅(abs ∘ − )𝐶) < 𝑟 ↔ (abs‘(𝑅𝐶)) < 𝑟))
8782, 86bitrd 268 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (abs‘(𝑅𝐶)) < 𝑟))
8887biimprd 238 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → ((abs‘(𝑅𝐶)) < 𝑟𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
8972, 88imim12d 81 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → ((𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
9089ralimdva 2957 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) → (∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → ∀𝑥𝐵 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
9190impr 648 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥𝐵 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
9220a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (abs ∘ − ) ∈ (∞Met‘ℂ))
9315ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐶 ∈ ℂ)
94 simplrl 799 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑟 ∈ ℝ+)
95 blcntr 22141 . . . . . . . . . . . . . . . . . . . . 21 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
9692, 93, 94, 95syl3anc 1323 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
9796a1d 25 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (+∞ ∈ (𝑘(,]+∞) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
98 eleq1 2686 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = +∞ → (𝑥 ∈ (𝑘(,]+∞) ↔ +∞ ∈ (𝑘(,]+∞)))
9912eleq1d 2683 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = +∞ → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
10098, 99imbi12d 334 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = +∞ → ((𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑘(,]+∞) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
1016, 100ralsn 4198 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ {+∞} (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑘(,]+∞) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
10297, 101sylibr 224 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥 ∈ {+∞} (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
103 ralunb 3777 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ (𝐵 ∪ {+∞})(𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (∀𝑥𝐵 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ∧ ∀𝑥 ∈ {+∞} (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
10491, 102, 103sylanbrc 697 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥 ∈ (𝐵 ∪ {+∞})(𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
1059ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐴 = (𝐵 ∪ {+∞}))
106105raleqdv 3136 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (∀𝑥𝐴 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ ∀𝑥 ∈ (𝐵 ∪ {+∞})(𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
107104, 106mpbird 247 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥𝐴 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
108 ss2rab 3662 . . . . . . . . . . . . . . . 16 ({𝑥𝐴𝑥 ∈ (𝑘(,]+∞)} ⊆ {𝑥𝐴𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)} ↔ ∀𝑥𝐴 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
109107, 108sylibr 224 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → {𝑥𝐴𝑥 ∈ (𝑘(,]+∞)} ⊆ {𝑥𝐴𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)})
110 incom 3788 . . . . . . . . . . . . . . . 16 ((𝑘(,]+∞) ∩ 𝐴) = (𝐴 ∩ (𝑘(,]+∞))
111 dfin5 3567 . . . . . . . . . . . . . . . 16 (𝐴 ∩ (𝑘(,]+∞)) = {𝑥𝐴𝑥 ∈ (𝑘(,]+∞)}
112110, 111eqtri 2643 . . . . . . . . . . . . . . 15 ((𝑘(,]+∞) ∩ 𝐴) = {𝑥𝐴𝑥 ∈ (𝑘(,]+∞)}
1132mptpreima 5592 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟)) = {𝑥𝐴𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)}
114109, 112, 1133sstr4g 3630 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ⊆ ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟)))
115 funmpt 5889 . . . . . . . . . . . . . . 15 Fun (𝑥𝐴𝑅)
116 inss2 3817 . . . . . . . . . . . . . . . 16 ((𝑘(,]+∞) ∩ 𝐴) ⊆ 𝐴
1173ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (𝑥𝐴𝑅):𝐴⟶ℂ)
118 fdm 6013 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑅):𝐴⟶ℂ → dom (𝑥𝐴𝑅) = 𝐴)
119117, 118syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → dom (𝑥𝐴𝑅) = 𝐴)
120116, 119syl5sseqr 3638 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ⊆ dom (𝑥𝐴𝑅))
121 funimass3 6294 . . . . . . . . . . . . . . 15 ((Fun (𝑥𝐴𝑅) ∧ ((𝑘(,]+∞) ∩ 𝐴) ⊆ dom (𝑥𝐴𝑅)) → (((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ((𝑘(,]+∞) ∩ 𝐴) ⊆ ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟))))
122115, 120, 121sylancr 694 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ((𝑘(,]+∞) ∩ 𝐴) ⊆ ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟))))
123114, 122mpbird 247 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))
124 simplrr 800 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)
125123, 124sstrd 3597 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦)
126 eleq2 2687 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → (+∞ ∈ 𝑧 ↔ +∞ ∈ ((𝑘(,]+∞) ∩ 𝐴)))
127 imaeq2 5426 . . . . . . . . . . . . . . 15 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → ((𝑥𝐴𝑅) “ 𝑧) = ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)))
128127sseq1d 3616 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → (((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦 ↔ ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦))
129126, 128anbi12d 746 . . . . . . . . . . . . 13 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → ((+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦) ↔ (+∞ ∈ ((𝑘(,]+∞) ∩ 𝐴) ∧ ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦)))
130129rspcev 3298 . . . . . . . . . . . 12 ((((𝑘(,]+∞) ∩ 𝐴) ∈ 𝐾 ∧ (+∞ ∈ ((𝑘(,]+∞) ∩ 𝐴) ∧ ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦)) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦))
13152, 61, 125, 130syl12anc 1321 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦))
132131rexlimdvaa 3026 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → (∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
133132adantlr 750 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → (∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
13432, 133mpd 15 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦))
135134rexlimdvaa 3026 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → (∃𝑟 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
13624, 135syl5 34 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → ((𝑦𝐽𝐶𝑦) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
137136expdimp 453 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → (𝐶𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
13819, 137sylbid 230 . . . 4 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
139138ralrimiva 2961 . . 3 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
140 letopon 20932 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
141 resttopon 20888 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ 𝐴 ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t 𝐴) ∈ (TopOn‘𝐴))
142140, 42, 141sylancr 694 . . . . . 6 (𝜑 → ((ordTop‘ ≤ ) ↾t 𝐴) ∈ (TopOn‘𝐴))
14351, 142syl5eqel 2702 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝐴))
14421cnfldtopon 22509 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
145144a1i 11 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ℂ))
146 iscnp 20964 . . . . 5 ((𝐾 ∈ (TopOn‘𝐴) ∧ 𝐽 ∈ (TopOn‘ℂ) ∧ +∞ ∈ 𝐴) → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))))
147143, 145, 10, 146syl3anc 1323 . . . 4 (𝜑 → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))))
148147adantr 481 . . 3 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))))
1494, 139, 148mpbir2and 956 . 2 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞))
150 simplr 791 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞))
15120a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
15215ad2antrr 761 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝐶 ∈ ℂ)
15376adantl 482 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
15422blopn 22228 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝐶(ball‘(abs ∘ − ))𝑟) ∈ 𝐽)
155151, 152, 153, 154syl3anc 1323 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝐶(ball‘(abs ∘ − ))𝑟) ∈ 𝐽)
15617ad2antrr 761 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
157 simpr 477 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
158151, 152, 157, 95syl3anc 1323 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
159156, 158eqeltrd 2698 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ((𝑥𝐴𝑅)‘+∞) ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
160 cnpimaex 20983 . . . . . . 7 (((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ∈ 𝐽 ∧ ((𝑥𝐴𝑅)‘+∞) ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
161150, 155, 159, 160syl3anc 1323 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
162 vex 3192 . . . . . . . . 9 𝑤 ∈ V
163162inex1 4764 . . . . . . . 8 (𝑤𝐴) ∈ V
164163a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑤 ∈ (ordTop‘ ≤ )) → (𝑤𝐴) ∈ V)
16551eleq2i 2690 . . . . . . . 8 (𝑧𝐾𝑧 ∈ ((ordTop‘ ≤ ) ↾t 𝐴))
16645ad2antrr 761 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝐴 ∈ V)
167 elrest 16020 . . . . . . . . 9 (((ordTop‘ ≤ ) ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ ((ordTop‘ ≤ ) ↾t 𝐴) ↔ ∃𝑤 ∈ (ordTop‘ ≤ )𝑧 = (𝑤𝐴)))
16833, 166, 167sylancr 694 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝑧 ∈ ((ordTop‘ ≤ ) ↾t 𝐴) ↔ ∃𝑤 ∈ (ordTop‘ ≤ )𝑧 = (𝑤𝐴)))
169165, 168syl5bb 272 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝑧𝐾 ↔ ∃𝑤 ∈ (ordTop‘ ≤ )𝑧 = (𝑤𝐴)))
170 eleq2 2687 . . . . . . . . 9 (𝑧 = (𝑤𝐴) → (+∞ ∈ 𝑧 ↔ +∞ ∈ (𝑤𝐴)))
171 imaeq2 5426 . . . . . . . . . 10 (𝑧 = (𝑤𝐴) → ((𝑥𝐴𝑅) “ 𝑧) = ((𝑥𝐴𝑅) “ (𝑤𝐴)))
172171sseq1d 3616 . . . . . . . . 9 (𝑧 = (𝑤𝐴) → (((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
173170, 172anbi12d 746 . . . . . . . 8 (𝑧 = (𝑤𝐴) → ((+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))))
174173adantl 482 . . . . . . 7 ((((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧 = (𝑤𝐴)) → ((+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))))
175164, 169, 174rexxfr2d 4848 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))))
176161, 175mpbid 222 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
177 inss1 3816 . . . . . . . . . . . 12 (𝑤𝐴) ⊆ 𝑤
178177sseli 3583 . . . . . . . . . . 11 (+∞ ∈ (𝑤𝐴) → +∞ ∈ 𝑤)
179 pnfnei 20947 . . . . . . . . . . 11 ((𝑤 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝑤) → ∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤)
180178, 179sylan2 491 . . . . . . . . . 10 ((𝑤 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ (𝑤𝐴)) → ∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤)
181 df-ima 5092 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝑅) “ (𝑤𝐴)) = ran ((𝑥𝐴𝑅) ↾ (𝑤𝐴))
182 inss2 3817 . . . . . . . . . . . . . . . . . 18 (𝑤𝐴) ⊆ 𝐴
183 resmpt 5413 . . . . . . . . . . . . . . . . . 18 ((𝑤𝐴) ⊆ 𝐴 → ((𝑥𝐴𝑅) ↾ (𝑤𝐴)) = (𝑥 ∈ (𝑤𝐴) ↦ 𝑅))
184182, 183ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑅) ↾ (𝑤𝐴)) = (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
185184rneqi 5317 . . . . . . . . . . . . . . . 16 ran ((𝑥𝐴𝑅) ↾ (𝑤𝐴)) = ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
186181, 185eqtri 2643 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑅) “ (𝑤𝐴)) = ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
187186sseq1i 3613 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))
188 dfss3 3577 . . . . . . . . . . . . . 14 (ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
189187, 188bitri 264 . . . . . . . . . . . . 13 (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
19011adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ ℝ+) → ∀𝑥𝐴 𝑅 ∈ ℂ)
191 ssralv 3650 . . . . . . . . . . . . . . . 16 ((𝑤𝐴) ⊆ 𝐴 → (∀𝑥𝐴 𝑅 ∈ ℂ → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ ℂ))
192182, 190, 191mpsyl 68 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ ℝ+) → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ ℂ)
193 eqid 2621 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑤𝐴) ↦ 𝑅) = (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
194 eleq1 2686 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑅 → (𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
195193, 194ralrnmpt 6329 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ ℂ → (∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
196192, 195syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ ℝ+) → (∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
197196biimpd 219 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℝ+) → (∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
198189, 197syl5bi 232 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ+) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
199 simplrr 800 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑘(,]+∞) ⊆ 𝑤)
20037ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝐵 ⊆ ℝ*)
201 simprl 793 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥𝐵)
202200, 201sseldd 3588 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ∈ ℝ*)
203 simprr 795 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑘 < 𝑥)
204 pnfge 11916 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ*𝑥 ≤ +∞)
205202, 204syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ≤ +∞)
206 simplrl 799 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑘 ∈ ℝ)
207206rexrd 10041 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑘 ∈ ℝ*)
208207, 38, 64sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑥 ∈ (𝑘(,]+∞) ↔ (𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞)))
209202, 203, 205, 208mpbir3and 1243 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ∈ (𝑘(,]+∞))
210199, 209sseldd 3588 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥𝑤)
21126ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → 𝐵𝐴)
212211sselda 3587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ 𝑥𝐵) → 𝑥𝐴)
213212adantrr 752 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥𝐴)
214210, 213elind 3781 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ∈ (𝑤𝐴))
215214ex 450 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥𝐵𝑘 < 𝑥) → 𝑥 ∈ (𝑤𝐴)))
216215imim1d 82 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥 ∈ (𝑤𝐴) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ((𝑥𝐵𝑘 < 𝑥) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
21720a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
21876adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
219218ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑟 ∈ ℝ*)
22015ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝐶 ∈ ℂ)
22128ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ∀𝑥𝐵 𝑅 ∈ ℂ)
222221r19.21bi 2927 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ 𝑥𝐵) → 𝑅 ∈ ℂ)
223222adantrr 752 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑅 ∈ ℂ)
224217, 219, 220, 223, 81syl22anc 1324 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐶) < 𝑟))
225223, 220, 84syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
226225breq1d 4628 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → ((𝑅(abs ∘ − )𝐶) < 𝑟 ↔ (abs‘(𝑅𝐶)) < 𝑟))
227224, 226bitrd 268 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (abs‘(𝑅𝐶)) < 𝑟))
228227pm5.74da 722 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → (((𝑥𝐵𝑘 < 𝑥) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ ((𝑥𝐵𝑘 < 𝑥) → (abs‘(𝑅𝐶)) < 𝑟)))
229216, 228sylibd 229 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥 ∈ (𝑤𝐴) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ((𝑥𝐵𝑘 < 𝑥) → (abs‘(𝑅𝐶)) < 𝑟)))
230229exp4a 632 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥 ∈ (𝑤𝐴) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → (𝑥𝐵 → (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
231230ralimdv2 2956 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → (∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
232231imp 445 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
233232an32s 845 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
234233expr 642 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ∧ 𝑘 ∈ ℝ) → ((𝑘(,]+∞) ⊆ 𝑤 → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
235234reximdva 3012 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
236235ex 450 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
237198, 236syld 47 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
238237com23 86 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
239180, 238syl5 34 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → ((𝑤 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ (𝑤𝐴)) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
240239impl 649 . . . . . . . 8 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑤 ∈ (ordTop‘ ≤ )) ∧ +∞ ∈ (𝑤𝐴)) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
241240expimpd 628 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑤 ∈ (ordTop‘ ≤ )) → ((+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
242241rexlimdva 3025 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → (∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
243242adantlr 750 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
244176, 243mpd 15 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
245244ralrimiva 2961 . . 3 ((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) → ∀𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
24628, 35, 15rlim2lt 14170 . . . 4 (𝜑 → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ ∀𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
247246adantr 481 . . 3 ((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ ∀𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
248245, 247mpbird 247 . 2 ((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) → (𝑥𝐵𝑅) ⇝𝑟 𝐶)
249149, 248impbida 876 1 (𝜑 → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908  {crab 2911  Vcvv 3189  cun 3557  cin 3558  wss 3559  {csn 4153   class class class wbr 4618  cmpt 4678  ccnv 5078  dom cdm 5079  ran crn 5080  cres 5081  cima 5082  ccom 5083  Fun wfun 5846  wf 5848  cfv 5852  (class class class)co 6610  cc 9886  cr 9887  +∞cpnf 10023  *cxr 10025   < clt 10026  cle 10027  cmin 10218  +crp 11784  (,]cioc 12126  abscabs 13916  𝑟 crli 14158  t crest 16013  TopOpenctopn 16014  ordTopcordt 16091  ∞Metcxmt 19663  ballcbl 19665  fldccnfld 19678  Topctop 20630  TopOnctopon 20647   CnP ccnp 20952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fi 8269  df-sup 8300  df-inf 8301  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ioc 12130  df-ico 12131  df-icc 12132  df-fz 12277  df-seq 12750  df-exp 12809  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-rlim 14162  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-plusg 15886  df-mulr 15887  df-starv 15888  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-rest 16015  df-topn 16016  df-topgen 16036  df-ordt 16093  df-ps 17132  df-tsr 17133  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cnp 20955  df-xms 22048  df-ms 22049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator