ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nna0r Unicode version

Theorem nna0r 6531
Description: Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
nna0r  |-  ( A  e.  om  ->  ( (/) 
+o  A )  =  A )

Proof of Theorem nna0r
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5926 . . 3  |-  ( x  =  (/)  ->  ( (/)  +o  x )  =  (
(/)  +o  (/) ) )
2 id 19 . . 3  |-  ( x  =  (/)  ->  x  =  (/) )
31, 2eqeq12d 2208 . 2  |-  ( x  =  (/)  ->  ( (
(/)  +o  x )  =  x  <->  ( (/)  +o  (/) )  =  (/) ) )
4 oveq2 5926 . . 3  |-  ( x  =  y  ->  ( (/) 
+o  x )  =  ( (/)  +o  y
) )
5 id 19 . . 3  |-  ( x  =  y  ->  x  =  y )
64, 5eqeq12d 2208 . 2  |-  ( x  =  y  ->  (
( (/)  +o  x )  =  x  <->  ( (/)  +o  y
)  =  y ) )
7 oveq2 5926 . . 3  |-  ( x  =  suc  y  -> 
( (/)  +o  x )  =  ( (/)  +o  suc  y ) )
8 id 19 . . 3  |-  ( x  =  suc  y  ->  x  =  suc  y )
97, 8eqeq12d 2208 . 2  |-  ( x  =  suc  y  -> 
( ( (/)  +o  x
)  =  x  <->  ( (/)  +o  suc  y )  =  suc  y ) )
10 oveq2 5926 . . 3  |-  ( x  =  A  ->  ( (/) 
+o  x )  =  ( (/)  +o  A
) )
11 id 19 . . 3  |-  ( x  =  A  ->  x  =  A )
1210, 11eqeq12d 2208 . 2  |-  ( x  =  A  ->  (
( (/)  +o  x )  =  x  <->  ( (/)  +o  A
)  =  A ) )
13 0elon 4423 . . 3  |-  (/)  e.  On
14 oa0 6510 . . 3  |-  ( (/)  e.  On  ->  ( (/)  +o  (/) )  =  (/) )
1513, 14ax-mp 5 . 2  |-  ( (/)  +o  (/) )  =  (/)
16 peano1 4626 . . . 4  |-  (/)  e.  om
17 nnasuc 6529 . . . 4  |-  ( (
(/)  e.  om  /\  y  e.  om )  ->  ( (/) 
+o  suc  y )  =  suc  ( (/)  +o  y
) )
1816, 17mpan 424 . . 3  |-  ( y  e.  om  ->  ( (/) 
+o  suc  y )  =  suc  ( (/)  +o  y
) )
19 suceq 4433 . . . 4  |-  ( (
(/)  +o  y )  =  y  ->  suc  ( (/) 
+o  y )  =  suc  y )
2019eqeq2d 2205 . . 3  |-  ( (
(/)  +o  y )  =  y  ->  ( (
(/)  +o  suc  y )  =  suc  ( (/)  +o  y )  <->  ( (/)  +o  suc  y )  =  suc  y ) )
2118, 20syl5ibcom 155 . 2  |-  ( y  e.  om  ->  (
( (/)  +o  y )  =  y  ->  ( (/) 
+o  suc  y )  =  suc  y ) )
223, 6, 9, 12, 15, 21finds 4632 1  |-  ( A  e.  om  ->  ( (/) 
+o  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   (/)c0 3446   Oncon0 4394   suc csuc 4396   omcom 4622  (class class class)co 5918    +o coa 6466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-oadd 6473
This theorem is referenced by:  nnacom  6537  nnaword  6564  nnm1  6578  prarloclem5  7560
  Copyright terms: Public domain W3C validator