| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le2 | Unicode version | ||
| Description: 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0le2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0le1 8628 |
. . 3
| |
| 2 | 1re 8145 |
. . . 4
| |
| 3 | 2, 2 | addge0i 8636 |
. . 3
|
| 4 | 1, 1, 3 | mp2an 426 |
. 2
|
| 5 | df-2 9169 |
. 2
| |
| 6 | 4, 5 | breqtrri 4110 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4083 (class class class)co 6001
|
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-iota 5278 df-fv 5326 df-ov 6004 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-2 9169 |
| This theorem is referenced by: expubnd 10818 4bc2eq6 10996 sqrt4 11558 sqrt2gt1lt2 11560 amgm2 11629 bdtrilem 11750 ege2le3 12182 cos2bnd 12271 evennn2n 12394 6gcd4e2 12516 sqrt2irrlem 12683 sqrt2irraplemnn 12701 oddennn 12963 sincos4thpi 15514 lgslem1 15679 m1lgs 15764 2lgslem1a1 15765 2lgslem4 15782 |
| Copyright terms: Public domain | W3C validator |