| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le2 | Unicode version | ||
| Description: 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0le2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0le1 8556 |
. . 3
| |
| 2 | 1re 8073 |
. . . 4
| |
| 3 | 2, 2 | addge0i 8564 |
. . 3
|
| 4 | 1, 1, 3 | mp2an 426 |
. 2
|
| 5 | df-2 9097 |
. 2
| |
| 6 | 4, 5 | breqtrri 4072 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4045 (class class class)co 5946
|
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-iota 5233 df-fv 5280 df-ov 5949 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-2 9097 |
| This theorem is referenced by: expubnd 10743 4bc2eq6 10921 sqrt4 11391 sqrt2gt1lt2 11393 amgm2 11462 bdtrilem 11583 ege2le3 12015 cos2bnd 12104 evennn2n 12227 6gcd4e2 12349 sqrt2irrlem 12516 sqrt2irraplemnn 12534 oddennn 12796 sincos4thpi 15345 lgslem1 15510 m1lgs 15595 2lgslem1a1 15596 2lgslem4 15613 |
| Copyright terms: Public domain | W3C validator |