ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0le2 Unicode version

Theorem 0le2 9161
Description: 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.)
Assertion
Ref Expression
0le2  |-  0  <_  2

Proof of Theorem 0le2
StepHypRef Expression
1 0le1 8589 . . 3  |-  0  <_  1
2 1re 8106 . . . 4  |-  1  e.  RR
32, 2addge0i 8597 . . 3  |-  ( ( 0  <_  1  /\  0  <_  1 )  -> 
0  <_  ( 1  +  1 ) )
41, 1, 3mp2an 426 . 2  |-  0  <_  ( 1  +  1 )
5 df-2 9130 . 2  |-  2  =  ( 1  +  1 )
64, 5breqtrri 4086 1  |-  0  <_  2
Colors of variables: wff set class
Syntax hints:   class class class wbr 4059  (class class class)co 5967   0cc0 7960   1c1 7961    + caddc 7963    <_ cle 8143   2c2 9122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-iota 5251  df-fv 5298  df-ov 5970  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-2 9130
This theorem is referenced by:  expubnd  10778  4bc2eq6  10956  sqrt4  11473  sqrt2gt1lt2  11475  amgm2  11544  bdtrilem  11665  ege2le3  12097  cos2bnd  12186  evennn2n  12309  6gcd4e2  12431  sqrt2irrlem  12598  sqrt2irraplemnn  12616  oddennn  12878  sincos4thpi  15427  lgslem1  15592  m1lgs  15677  2lgslem1a1  15678  2lgslem4  15695
  Copyright terms: Public domain W3C validator