![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1prl | GIF version |
Description: The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.) |
Ref | Expression |
---|---|
1prl | ⊢ (1st ‘1P) = {𝑥 ∣ 𝑥 <Q 1Q} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1p 7468 | . . 3 ⊢ 1P = ⟨{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩ | |
2 | 1 | fveq2i 5520 | . 2 ⊢ (1st ‘1P) = (1st ‘⟨{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩) |
3 | ltnqex 7550 | . . 3 ⊢ {𝑥 ∣ 𝑥 <Q 1Q} ∈ V | |
4 | gtnqex 7551 | . . 3 ⊢ {𝑦 ∣ 1Q <Q 𝑦} ∈ V | |
5 | 3, 4 | op1st 6149 | . 2 ⊢ (1st ‘⟨{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩) = {𝑥 ∣ 𝑥 <Q 1Q} |
6 | 2, 5 | eqtri 2198 | 1 ⊢ (1st ‘1P) = {𝑥 ∣ 𝑥 <Q 1Q} |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 {cab 2163 ⟨cop 3597 class class class wbr 4005 ‘cfv 5218 1st c1st 6141 1Qc1q 7282 <Q cltq 7286 1Pc1p 7293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-1st 6143 df-qs 6543 df-ni 7305 df-nqqs 7349 df-ltnqqs 7354 df-i1p 7468 |
This theorem is referenced by: 1idprl 7591 recexprlem1ssl 7634 recexprlemss1l 7636 |
Copyright terms: Public domain | W3C validator |