ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1prl GIF version

Theorem 1prl 7730
Description: The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
1prl (1st ‘1P) = {𝑥𝑥 <Q 1Q}

Proof of Theorem 1prl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-i1p 7642 . . 3 1P = ⟨{𝑥𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩
21fveq2i 5626 . 2 (1st ‘1P) = (1st ‘⟨{𝑥𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩)
3 ltnqex 7724 . . 3 {𝑥𝑥 <Q 1Q} ∈ V
4 gtnqex 7725 . . 3 {𝑦 ∣ 1Q <Q 𝑦} ∈ V
53, 4op1st 6282 . 2 (1st ‘⟨{𝑥𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩) = {𝑥𝑥 <Q 1Q}
62, 5eqtri 2250 1 (1st ‘1P) = {𝑥𝑥 <Q 1Q}
Colors of variables: wff set class
Syntax hints:   = wceq 1395  {cab 2215  cop 3669   class class class wbr 4082  cfv 5314  1st c1st 6274  1Qc1q 7456   <Q cltq 7460  1Pc1p 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-1st 6276  df-qs 6676  df-ni 7479  df-nqqs 7523  df-ltnqqs 7528  df-i1p 7642
This theorem is referenced by:  1idprl  7765  recexprlem1ssl  7808  recexprlemss1l  7810
  Copyright terms: Public domain W3C validator