ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1prl GIF version

Theorem 1prl 7617
Description: The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
1prl (1st ‘1P) = {𝑥𝑥 <Q 1Q}

Proof of Theorem 1prl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-i1p 7529 . . 3 1P = ⟨{𝑥𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩
21fveq2i 5558 . 2 (1st ‘1P) = (1st ‘⟨{𝑥𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩)
3 ltnqex 7611 . . 3 {𝑥𝑥 <Q 1Q} ∈ V
4 gtnqex 7612 . . 3 {𝑦 ∣ 1Q <Q 𝑦} ∈ V
53, 4op1st 6201 . 2 (1st ‘⟨{𝑥𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩) = {𝑥𝑥 <Q 1Q}
62, 5eqtri 2214 1 (1st ‘1P) = {𝑥𝑥 <Q 1Q}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  {cab 2179  cop 3622   class class class wbr 4030  cfv 5255  1st c1st 6193  1Qc1q 7343   <Q cltq 7347  1Pc1p 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-qs 6595  df-ni 7366  df-nqqs 7410  df-ltnqqs 7415  df-i1p 7529
This theorem is referenced by:  1idprl  7652  recexprlem1ssl  7695  recexprlemss1l  7697
  Copyright terms: Public domain W3C validator