![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1prl | GIF version |
Description: The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.) |
Ref | Expression |
---|---|
1prl | ⊢ (1st ‘1P) = {𝑥 ∣ 𝑥 <Q 1Q} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1p 7529 | . . 3 ⊢ 1P = 〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉 | |
2 | 1 | fveq2i 5558 | . 2 ⊢ (1st ‘1P) = (1st ‘〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉) |
3 | ltnqex 7611 | . . 3 ⊢ {𝑥 ∣ 𝑥 <Q 1Q} ∈ V | |
4 | gtnqex 7612 | . . 3 ⊢ {𝑦 ∣ 1Q <Q 𝑦} ∈ V | |
5 | 3, 4 | op1st 6201 | . 2 ⊢ (1st ‘〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉) = {𝑥 ∣ 𝑥 <Q 1Q} |
6 | 2, 5 | eqtri 2214 | 1 ⊢ (1st ‘1P) = {𝑥 ∣ 𝑥 <Q 1Q} |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 {cab 2179 〈cop 3622 class class class wbr 4030 ‘cfv 5255 1st c1st 6193 1Qc1q 7343 <Q cltq 7347 1Pc1p 7354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-1st 6195 df-qs 6595 df-ni 7366 df-nqqs 7410 df-ltnqqs 7415 df-i1p 7529 |
This theorem is referenced by: 1idprl 7652 recexprlem1ssl 7695 recexprlemss1l 7697 |
Copyright terms: Public domain | W3C validator |