Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1prl | GIF version |
Description: The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.) |
Ref | Expression |
---|---|
1prl | ⊢ (1st ‘1P) = {𝑥 ∣ 𝑥 <Q 1Q} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1p 7429 | . . 3 ⊢ 1P = 〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉 | |
2 | 1 | fveq2i 5499 | . 2 ⊢ (1st ‘1P) = (1st ‘〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉) |
3 | ltnqex 7511 | . . 3 ⊢ {𝑥 ∣ 𝑥 <Q 1Q} ∈ V | |
4 | gtnqex 7512 | . . 3 ⊢ {𝑦 ∣ 1Q <Q 𝑦} ∈ V | |
5 | 3, 4 | op1st 6125 | . 2 ⊢ (1st ‘〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉) = {𝑥 ∣ 𝑥 <Q 1Q} |
6 | 2, 5 | eqtri 2191 | 1 ⊢ (1st ‘1P) = {𝑥 ∣ 𝑥 <Q 1Q} |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 {cab 2156 〈cop 3586 class class class wbr 3989 ‘cfv 5198 1st c1st 6117 1Qc1q 7243 <Q cltq 7247 1Pc1p 7254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-qs 6519 df-ni 7266 df-nqqs 7310 df-ltnqqs 7315 df-i1p 7429 |
This theorem is referenced by: 1idprl 7552 recexprlem1ssl 7595 recexprlemss1l 7597 |
Copyright terms: Public domain | W3C validator |