![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1prl | GIF version |
Description: The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.) |
Ref | Expression |
---|---|
1prl | ⊢ (1st ‘1P) = {𝑥 ∣ 𝑥 <Q 1Q} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1p 7176 | . . 3 ⊢ 1P = 〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉 | |
2 | 1 | fveq2i 5356 | . 2 ⊢ (1st ‘1P) = (1st ‘〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉) |
3 | ltnqex 7258 | . . 3 ⊢ {𝑥 ∣ 𝑥 <Q 1Q} ∈ V | |
4 | gtnqex 7259 | . . 3 ⊢ {𝑦 ∣ 1Q <Q 𝑦} ∈ V | |
5 | 3, 4 | op1st 5975 | . 2 ⊢ (1st ‘〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉) = {𝑥 ∣ 𝑥 <Q 1Q} |
6 | 2, 5 | eqtri 2120 | 1 ⊢ (1st ‘1P) = {𝑥 ∣ 𝑥 <Q 1Q} |
Colors of variables: wff set class |
Syntax hints: = wceq 1299 {cab 2086 〈cop 3477 class class class wbr 3875 ‘cfv 5059 1st c1st 5967 1Qc1q 6990 <Q cltq 6994 1Pc1p 7001 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-iinf 4440 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-1st 5969 df-qs 6365 df-ni 7013 df-nqqs 7057 df-ltnqqs 7062 df-i1p 7176 |
This theorem is referenced by: 1idprl 7299 recexprlem1ssl 7342 recexprlemss1l 7344 |
Copyright terms: Public domain | W3C validator |