Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1prl | GIF version |
Description: The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.) |
Ref | Expression |
---|---|
1prl | ⊢ (1st ‘1P) = {𝑥 ∣ 𝑥 <Q 1Q} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1p 7408 | . . 3 ⊢ 1P = 〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉 | |
2 | 1 | fveq2i 5489 | . 2 ⊢ (1st ‘1P) = (1st ‘〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉) |
3 | ltnqex 7490 | . . 3 ⊢ {𝑥 ∣ 𝑥 <Q 1Q} ∈ V | |
4 | gtnqex 7491 | . . 3 ⊢ {𝑦 ∣ 1Q <Q 𝑦} ∈ V | |
5 | 3, 4 | op1st 6114 | . 2 ⊢ (1st ‘〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉) = {𝑥 ∣ 𝑥 <Q 1Q} |
6 | 2, 5 | eqtri 2186 | 1 ⊢ (1st ‘1P) = {𝑥 ∣ 𝑥 <Q 1Q} |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 {cab 2151 〈cop 3579 class class class wbr 3982 ‘cfv 5188 1st c1st 6106 1Qc1q 7222 <Q cltq 7226 1Pc1p 7233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-qs 6507 df-ni 7245 df-nqqs 7289 df-ltnqqs 7294 df-i1p 7408 |
This theorem is referenced by: 1idprl 7531 recexprlem1ssl 7574 recexprlemss1l 7576 |
Copyright terms: Public domain | W3C validator |