ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1prl GIF version

Theorem 1prl 7681
Description: The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
1prl (1st ‘1P) = {𝑥𝑥 <Q 1Q}

Proof of Theorem 1prl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-i1p 7593 . . 3 1P = ⟨{𝑥𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩
21fveq2i 5589 . 2 (1st ‘1P) = (1st ‘⟨{𝑥𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩)
3 ltnqex 7675 . . 3 {𝑥𝑥 <Q 1Q} ∈ V
4 gtnqex 7676 . . 3 {𝑦 ∣ 1Q <Q 𝑦} ∈ V
53, 4op1st 6242 . 2 (1st ‘⟨{𝑥𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩) = {𝑥𝑥 <Q 1Q}
62, 5eqtri 2227 1 (1st ‘1P) = {𝑥𝑥 <Q 1Q}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  {cab 2192  cop 3638   class class class wbr 4048  cfv 5277  1st c1st 6234  1Qc1q 7407   <Q cltq 7411  1Pc1p 7418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-1st 6236  df-qs 6636  df-ni 7430  df-nqqs 7474  df-ltnqqs 7479  df-i1p 7593
This theorem is referenced by:  1idprl  7716  recexprlem1ssl  7759  recexprlemss1l  7761
  Copyright terms: Public domain W3C validator