ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1pr Unicode version

Theorem 1pr 7616
Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
1pr  |-  1P  e.  P.

Proof of Theorem 1pr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-i1p 7529 . 2  |-  1P  =  <. { x  |  x 
<Q  1Q } ,  {
y  |  1Q  <Q  y } >.
2 1nq 7428 . . 3  |-  1Q  e.  Q.
3 nqprlu 7609 . . 3  |-  ( 1Q  e.  Q.  ->  <. { x  |  x  <Q  1Q } ,  { y  |  1Q  <Q  y } >.  e.  P. )
42, 3ax-mp 5 . 2  |-  <. { x  |  x  <Q  1Q } ,  { y  |  1Q  <Q  y } >.  e.  P.
51, 4eqeltri 2266 1  |-  1P  e.  P.
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   {cab 2179   <.cop 3622   class class class wbr 4030   Q.cnq 7342   1Qc1q 7343    <Q cltq 7347   P.cnp 7353   1Pc1p 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-inp 7528  df-i1p 7529
This theorem is referenced by:  1idprl  7652  1idpru  7653  1idpr  7654  recexprlemex  7699  ltmprr  7704  gt0srpr  7810  0r  7812  1sr  7813  m1r  7814  m1p1sr  7822  m1m1sr  7823  0lt1sr  7827  0idsr  7829  1idsr  7830  00sr  7831  recexgt0sr  7835  archsr  7844  srpospr  7845  prsrcl  7846  prsrpos  7847  prsradd  7848  prsrlt  7849  caucvgsrlembound  7856  ltpsrprg  7865  mappsrprg  7866  map2psrprg  7867  suplocsrlemb  7868  suplocsrlempr  7869  pitonnlem1p1  7908  pitonnlem2  7909  pitonn  7910  pitoregt0  7911  pitore  7912  recnnre  7913  recidpirqlemcalc  7919  recidpirq  7920
  Copyright terms: Public domain W3C validator