ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1pr Unicode version

Theorem 1pr 7638
Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
1pr  |-  1P  e.  P.

Proof of Theorem 1pr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-i1p 7551 . 2  |-  1P  =  <. { x  |  x 
<Q  1Q } ,  {
y  |  1Q  <Q  y } >.
2 1nq 7450 . . 3  |-  1Q  e.  Q.
3 nqprlu 7631 . . 3  |-  ( 1Q  e.  Q.  ->  <. { x  |  x  <Q  1Q } ,  { y  |  1Q  <Q  y } >.  e.  P. )
42, 3ax-mp 5 . 2  |-  <. { x  |  x  <Q  1Q } ,  { y  |  1Q  <Q  y } >.  e.  P.
51, 4eqeltri 2269 1  |-  1P  e.  P.
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   {cab 2182   <.cop 3626   class class class wbr 4034   Q.cnq 7364   1Qc1q 7365    <Q cltq 7369   P.cnp 7375   1Pc1p 7376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-inp 7550  df-i1p 7551
This theorem is referenced by:  1idprl  7674  1idpru  7675  1idpr  7676  recexprlemex  7721  ltmprr  7726  gt0srpr  7832  0r  7834  1sr  7835  m1r  7836  m1p1sr  7844  m1m1sr  7845  0lt1sr  7849  0idsr  7851  1idsr  7852  00sr  7853  recexgt0sr  7857  archsr  7866  srpospr  7867  prsrcl  7868  prsrpos  7869  prsradd  7870  prsrlt  7871  caucvgsrlembound  7878  ltpsrprg  7887  mappsrprg  7888  map2psrprg  7889  suplocsrlemb  7890  suplocsrlempr  7891  pitonnlem1p1  7930  pitonnlem2  7931  pitonn  7932  pitoregt0  7933  pitore  7934  recnnre  7935  recidpirqlemcalc  7941  recidpirq  7942
  Copyright terms: Public domain W3C validator