![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1pr | Unicode version |
Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) |
Ref | Expression |
---|---|
1pr |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1p 7521 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1nq 7420 |
. . 3
![]() ![]() ![]() ![]() | |
3 | nqprlu 7601 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | ax-mp 5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | eqeltri 2266 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4567 ax-iinf 4618 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-eprel 4318 df-id 4322 df-po 4325 df-iso 4326 df-iord 4395 df-on 4397 df-suc 4400 df-iom 4621 df-xp 4663 df-rel 4664 df-cnv 4665 df-co 4666 df-dm 4667 df-rn 4668 df-res 4669 df-ima 4670 df-iota 5211 df-fun 5252 df-fn 5253 df-f 5254 df-f1 5255 df-fo 5256 df-f1o 5257 df-fv 5258 df-ov 5917 df-oprab 5918 df-mpo 5919 df-1st 6188 df-2nd 6189 df-recs 6353 df-irdg 6418 df-1o 6464 df-oadd 6468 df-omul 6469 df-er 6582 df-ec 6584 df-qs 6588 df-ni 7358 df-pli 7359 df-mi 7360 df-lti 7361 df-plpq 7398 df-mpq 7399 df-enq 7401 df-nqqs 7402 df-plqqs 7403 df-mqqs 7404 df-1nqqs 7405 df-rq 7406 df-ltnqqs 7407 df-inp 7520 df-i1p 7521 |
This theorem is referenced by: 1idprl 7644 1idpru 7645 1idpr 7646 recexprlemex 7691 ltmprr 7696 gt0srpr 7802 0r 7804 1sr 7805 m1r 7806 m1p1sr 7814 m1m1sr 7815 0lt1sr 7819 0idsr 7821 1idsr 7822 00sr 7823 recexgt0sr 7827 archsr 7836 srpospr 7837 prsrcl 7838 prsrpos 7839 prsradd 7840 prsrlt 7841 caucvgsrlembound 7848 ltpsrprg 7857 mappsrprg 7858 map2psrprg 7859 suplocsrlemb 7860 suplocsrlempr 7861 pitonnlem1p1 7900 pitonnlem2 7901 pitonn 7902 pitoregt0 7903 pitore 7904 recnnre 7905 recidpirqlemcalc 7911 recidpirq 7912 |
Copyright terms: Public domain | W3C validator |