| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1pr | Unicode version | ||
| Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) |
| Ref | Expression |
|---|---|
| 1pr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i1p 7536 |
. 2
| |
| 2 | 1nq 7435 |
. . 3
| |
| 3 | nqprlu 7616 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2269 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-recs 6364 df-irdg 6429 df-1o 6475 df-oadd 6479 df-omul 6480 df-er 6593 df-ec 6595 df-qs 6599 df-ni 7373 df-pli 7374 df-mi 7375 df-lti 7376 df-plpq 7413 df-mpq 7414 df-enq 7416 df-nqqs 7417 df-plqqs 7418 df-mqqs 7419 df-1nqqs 7420 df-rq 7421 df-ltnqqs 7422 df-inp 7535 df-i1p 7536 |
| This theorem is referenced by: 1idprl 7659 1idpru 7660 1idpr 7661 recexprlemex 7706 ltmprr 7711 gt0srpr 7817 0r 7819 1sr 7820 m1r 7821 m1p1sr 7829 m1m1sr 7830 0lt1sr 7834 0idsr 7836 1idsr 7837 00sr 7838 recexgt0sr 7842 archsr 7851 srpospr 7852 prsrcl 7853 prsrpos 7854 prsradd 7855 prsrlt 7856 caucvgsrlembound 7863 ltpsrprg 7872 mappsrprg 7873 map2psrprg 7874 suplocsrlemb 7875 suplocsrlempr 7876 pitonnlem1p1 7915 pitonnlem2 7916 pitonn 7917 pitoregt0 7918 pitore 7919 recnnre 7920 recidpirqlemcalc 7926 recidpirq 7927 |
| Copyright terms: Public domain | W3C validator |