ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1pr Unicode version

Theorem 1pr 7621
Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
1pr  |-  1P  e.  P.

Proof of Theorem 1pr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-i1p 7534 . 2  |-  1P  =  <. { x  |  x 
<Q  1Q } ,  {
y  |  1Q  <Q  y } >.
2 1nq 7433 . . 3  |-  1Q  e.  Q.
3 nqprlu 7614 . . 3  |-  ( 1Q  e.  Q.  ->  <. { x  |  x  <Q  1Q } ,  { y  |  1Q  <Q  y } >.  e.  P. )
42, 3ax-mp 5 . 2  |-  <. { x  |  x  <Q  1Q } ,  { y  |  1Q  <Q  y } >.  e.  P.
51, 4eqeltri 2269 1  |-  1P  e.  P.
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   {cab 2182   <.cop 3625   class class class wbr 4033   Q.cnq 7347   1Qc1q 7348    <Q cltq 7352   P.cnp 7358   1Pc1p 7359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-inp 7533  df-i1p 7534
This theorem is referenced by:  1idprl  7657  1idpru  7658  1idpr  7659  recexprlemex  7704  ltmprr  7709  gt0srpr  7815  0r  7817  1sr  7818  m1r  7819  m1p1sr  7827  m1m1sr  7828  0lt1sr  7832  0idsr  7834  1idsr  7835  00sr  7836  recexgt0sr  7840  archsr  7849  srpospr  7850  prsrcl  7851  prsrpos  7852  prsradd  7853  prsrlt  7854  caucvgsrlembound  7861  ltpsrprg  7870  mappsrprg  7871  map2psrprg  7872  suplocsrlemb  7873  suplocsrlempr  7874  pitonnlem1p1  7913  pitonnlem2  7914  pitonn  7915  pitoregt0  7916  pitore  7917  recnnre  7918  recidpirqlemcalc  7924  recidpirq  7925
  Copyright terms: Public domain W3C validator