![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1stinl | GIF version |
Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
1stinl | ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 6737 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
2 | 1 | a1i 9 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉)) |
3 | opeq2 3623 | . . . . 5 ⊢ (𝑥 = 𝑋 → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) | |
4 | 3 | adantl 271 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = 𝑋) → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) |
5 | elex 2630 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
6 | 0ex 3966 | . . . . 5 ⊢ ∅ ∈ V | |
7 | opexg 4055 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝑋 ∈ 𝑉) → 〈∅, 𝑋〉 ∈ V) | |
8 | 6, 7 | mpan 415 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈∅, 𝑋〉 ∈ V) |
9 | 2, 4, 5, 8 | fvmptd 5385 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inl‘𝑋) = 〈∅, 𝑋〉) |
10 | 9 | fveq2d 5309 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = (1st ‘〈∅, 𝑋〉)) |
11 | op1stg 5921 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑋 ∈ 𝑉) → (1st ‘〈∅, 𝑋〉) = ∅) | |
12 | 6, 11 | mpan 415 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘〈∅, 𝑋〉) = ∅) |
13 | 10, 12 | eqtrd 2120 | 1 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∈ wcel 1438 Vcvv 2619 ∅c0 3286 〈cop 3449 ↦ cmpt 3899 ‘cfv 5015 1st c1st 5909 inlcinl 6735 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-iota 4980 df-fun 5017 df-fv 5023 df-1st 5911 df-inl 6737 |
This theorem is referenced by: djune 6767 updjudhcoinlf 6769 |
Copyright terms: Public domain | W3C validator |