| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1stinl | GIF version | ||
| Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.) |
| Ref | Expression |
|---|---|
| 1stinl | ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inl 7131 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉)) |
| 3 | opeq2 3819 | . . . . 5 ⊢ (𝑥 = 𝑋 → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) | |
| 4 | 3 | adantl 277 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = 𝑋) → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) |
| 5 | elex 2782 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
| 6 | 0ex 4170 | . . . . 5 ⊢ ∅ ∈ V | |
| 7 | opexg 4271 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝑋 ∈ 𝑉) → 〈∅, 𝑋〉 ∈ V) | |
| 8 | 6, 7 | mpan 424 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈∅, 𝑋〉 ∈ V) |
| 9 | 2, 4, 5, 8 | fvmptd 5654 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inl‘𝑋) = 〈∅, 𝑋〉) |
| 10 | 9 | fveq2d 5574 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = (1st ‘〈∅, 𝑋〉)) |
| 11 | op1stg 6226 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑋 ∈ 𝑉) → (1st ‘〈∅, 𝑋〉) = ∅) | |
| 12 | 6, 11 | mpan 424 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘〈∅, 𝑋〉) = ∅) |
| 13 | 10, 12 | eqtrd 2237 | 1 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∅c0 3459 〈cop 3635 ↦ cmpt 4104 ‘cfv 5268 1st c1st 6214 inlcinl 7129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-iota 5229 df-fun 5270 df-fv 5276 df-1st 6216 df-inl 7131 |
| This theorem is referenced by: djune 7162 updjudhcoinlf 7164 subctctexmid 15801 |
| Copyright terms: Public domain | W3C validator |