![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1stinl | GIF version |
Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
1stinl | ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 7049 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
2 | 1 | a1i 9 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉)) |
3 | opeq2 3781 | . . . . 5 ⊢ (𝑥 = 𝑋 → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) | |
4 | 3 | adantl 277 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = 𝑋) → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) |
5 | elex 2750 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
6 | 0ex 4132 | . . . . 5 ⊢ ∅ ∈ V | |
7 | opexg 4230 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝑋 ∈ 𝑉) → 〈∅, 𝑋〉 ∈ V) | |
8 | 6, 7 | mpan 424 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈∅, 𝑋〉 ∈ V) |
9 | 2, 4, 5, 8 | fvmptd 5600 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inl‘𝑋) = 〈∅, 𝑋〉) |
10 | 9 | fveq2d 5521 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = (1st ‘〈∅, 𝑋〉)) |
11 | op1stg 6154 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑋 ∈ 𝑉) → (1st ‘〈∅, 𝑋〉) = ∅) | |
12 | 6, 11 | mpan 424 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘〈∅, 𝑋〉) = ∅) |
13 | 10, 12 | eqtrd 2210 | 1 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∅c0 3424 〈cop 3597 ↦ cmpt 4066 ‘cfv 5218 1st c1st 6142 inlcinl 7047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fv 5226 df-1st 6144 df-inl 7049 |
This theorem is referenced by: djune 7080 updjudhcoinlf 7082 subctctexmid 14912 |
Copyright terms: Public domain | W3C validator |