ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stinl GIF version

Theorem 1stinl 7191
Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
1stinl (𝑋𝑉 → (1st ‘(inl‘𝑋)) = ∅)

Proof of Theorem 1stinl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inl 7164 . . . . 5 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
21a1i 9 . . . 4 (𝑋𝑉 → inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩))
3 opeq2 3826 . . . . 5 (𝑥 = 𝑋 → ⟨∅, 𝑥⟩ = ⟨∅, 𝑋⟩)
43adantl 277 . . . 4 ((𝑋𝑉𝑥 = 𝑋) → ⟨∅, 𝑥⟩ = ⟨∅, 𝑋⟩)
5 elex 2785 . . . 4 (𝑋𝑉𝑋 ∈ V)
6 0ex 4179 . . . . 5 ∅ ∈ V
7 opexg 4280 . . . . 5 ((∅ ∈ V ∧ 𝑋𝑉) → ⟨∅, 𝑋⟩ ∈ V)
86, 7mpan 424 . . . 4 (𝑋𝑉 → ⟨∅, 𝑋⟩ ∈ V)
92, 4, 5, 8fvmptd 5673 . . 3 (𝑋𝑉 → (inl‘𝑋) = ⟨∅, 𝑋⟩)
109fveq2d 5593 . 2 (𝑋𝑉 → (1st ‘(inl‘𝑋)) = (1st ‘⟨∅, 𝑋⟩))
11 op1stg 6249 . . 3 ((∅ ∈ V ∧ 𝑋𝑉) → (1st ‘⟨∅, 𝑋⟩) = ∅)
126, 11mpan 424 . 2 (𝑋𝑉 → (1st ‘⟨∅, 𝑋⟩) = ∅)
1310, 12eqtrd 2239 1 (𝑋𝑉 → (1st ‘(inl‘𝑋)) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  Vcvv 2773  c0 3464  cop 3641  cmpt 4113  cfv 5280  1st c1st 6237  inlcinl 7162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fv 5288  df-1st 6239  df-inl 7164
This theorem is referenced by:  djune  7195  updjudhcoinlf  7197  subctctexmid  16078
  Copyright terms: Public domain W3C validator