ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem3 Unicode version

Theorem 4sqlem3 12584
Description: Lemma for 4sq 12604. Sufficient condition to be in  S. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
4sqlem3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  e.  S )
Distinct variable groups:    w, n, x, y, z    B, n    A, n    C, n    D, n    S, n
Allowed substitution hints:    A( x, y, z, w)    B( x, y, z, w)    C( x, y, z, w)    D( x, y, z, w)    S( x, y, z, w)

Proof of Theorem 4sqlem3
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
2 oveq1 5932 . . . . . . 7  |-  ( c  =  C  ->  (
c ^ 2 )  =  ( C ^
2 ) )
32oveq1d 5940 . . . . . 6  |-  ( c  =  C  ->  (
( c ^ 2 )  +  ( d ^ 2 ) )  =  ( ( C ^ 2 )  +  ( d ^ 2 ) ) )
43oveq2d 5941 . . . . 5  |-  ( c  =  C  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( d ^ 2 ) ) ) )
54eqeq2d 2208 . . . 4  |-  ( c  =  C  ->  (
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  <->  ( (
( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( d ^ 2 ) ) ) ) )
6 oveq1 5932 . . . . . . 7  |-  ( d  =  D  ->  (
d ^ 2 )  =  ( D ^
2 ) )
76oveq2d 5941 . . . . . 6  |-  ( d  =  D  ->  (
( C ^ 2 )  +  ( d ^ 2 ) )  =  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
87oveq2d 5941 . . . . 5  |-  ( d  =  D  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( d ^
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) ) )
98eqeq2d 2208 . . . 4  |-  ( d  =  D  ->  (
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( d ^ 2 ) ) )  <->  ( (
( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) ) )
105, 9rspc2ev 2883 . . 3  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ  /\  (
( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) ) )  ->  E. c  e.  ZZ  E. d  e.  ZZ  (
( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
111, 10mp3an3 1337 . 2  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  E. c  e.  ZZ  E. d  e.  ZZ  (
( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
12 oveq1 5932 . . . . . . . . 9  |-  ( a  =  A  ->  (
a ^ 2 )  =  ( A ^
2 ) )
1312oveq1d 5940 . . . . . . . 8  |-  ( a  =  A  ->  (
( a ^ 2 )  +  ( b ^ 2 ) )  =  ( ( A ^ 2 )  +  ( b ^ 2 ) ) )
1413oveq1d 5940 . . . . . . 7  |-  ( a  =  A  ->  (
( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
1514eqeq2d 2208 . . . . . 6  |-  ( a  =  A  ->  (
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  <->  ( (
( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) ) )
16152rexbidv 2522 . . . . 5  |-  ( a  =  A  ->  ( E. c  e.  ZZ  E. d  e.  ZZ  (
( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  <->  E. c  e.  ZZ  E. d  e.  ZZ  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) ) )
17 oveq1 5932 . . . . . . . . 9  |-  ( b  =  B  ->  (
b ^ 2 )  =  ( B ^
2 ) )
1817oveq2d 5941 . . . . . . . 8  |-  ( b  =  B  ->  (
( A ^ 2 )  +  ( b ^ 2 ) )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
1918oveq1d 5940 . . . . . . 7  |-  ( b  =  B  ->  (
( ( A ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
2019eqeq2d 2208 . . . . . 6  |-  ( b  =  B  ->  (
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  <->  ( (
( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) ) )
21202rexbidv 2522 . . . . 5  |-  ( b  =  B  ->  ( E. c  e.  ZZ  E. d  e.  ZZ  (
( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  <->  E. c  e.  ZZ  E. d  e.  ZZ  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) ) )
2216, 21rspc2ev 2883 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  E. c  e.  ZZ  E. d  e.  ZZ  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
23223expa 1205 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  E. c  e.  ZZ  E. d  e.  ZZ  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
24 4sq.1 . . . 4  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
25244sqlem2 12583 . . 3  |-  ( ( ( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
2623, 25sylibr 134 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  E. c  e.  ZZ  E. d  e.  ZZ  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )  ->  ( (
( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  e.  S )
2711, 26sylan2 286 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   {cab 2182   E.wrex 2476  (class class class)co 5925    + caddc 7899   2c2 9058   ZZcz 9343   ^cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557  df-exp 10648
This theorem is referenced by:  4sqlem4a  12585
  Copyright terms: Public domain W3C validator