ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem3 Unicode version

Theorem 4sqlem3 12371
Description: Lemma for 4sq (not yet proved here) . Sufficient condition to be in  S. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
4sqlem3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  e.  S )
Distinct variable groups:    w, n, x, y, z    B, n    A, n    C, n    D, n    S, n
Allowed substitution hints:    A( x, y, z, w)    B( x, y, z, w)    C( x, y, z, w)    D( x, y, z, w)    S( x, y, z, w)

Proof of Theorem 4sqlem3
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . 3  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
2 oveq1 5876 . . . . . . 7  |-  ( c  =  C  ->  (
c ^ 2 )  =  ( C ^
2 ) )
32oveq1d 5884 . . . . . 6  |-  ( c  =  C  ->  (
( c ^ 2 )  +  ( d ^ 2 ) )  =  ( ( C ^ 2 )  +  ( d ^ 2 ) ) )
43oveq2d 5885 . . . . 5  |-  ( c  =  C  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( d ^ 2 ) ) ) )
54eqeq2d 2189 . . . 4  |-  ( c  =  C  ->  (
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  <->  ( (
( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( d ^ 2 ) ) ) ) )
6 oveq1 5876 . . . . . . 7  |-  ( d  =  D  ->  (
d ^ 2 )  =  ( D ^
2 ) )
76oveq2d 5885 . . . . . 6  |-  ( d  =  D  ->  (
( C ^ 2 )  +  ( d ^ 2 ) )  =  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
87oveq2d 5885 . . . . 5  |-  ( d  =  D  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( d ^
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) ) )
98eqeq2d 2189 . . . 4  |-  ( d  =  D  ->  (
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( d ^ 2 ) ) )  <->  ( (
( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) ) )
105, 9rspc2ev 2856 . . 3  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ  /\  (
( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) ) )  ->  E. c  e.  ZZ  E. d  e.  ZZ  (
( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
111, 10mp3an3 1326 . 2  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  E. c  e.  ZZ  E. d  e.  ZZ  (
( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
12 oveq1 5876 . . . . . . . . 9  |-  ( a  =  A  ->  (
a ^ 2 )  =  ( A ^
2 ) )
1312oveq1d 5884 . . . . . . . 8  |-  ( a  =  A  ->  (
( a ^ 2 )  +  ( b ^ 2 ) )  =  ( ( A ^ 2 )  +  ( b ^ 2 ) ) )
1413oveq1d 5884 . . . . . . 7  |-  ( a  =  A  ->  (
( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
1514eqeq2d 2189 . . . . . 6  |-  ( a  =  A  ->  (
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  <->  ( (
( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) ) )
16152rexbidv 2502 . . . . 5  |-  ( a  =  A  ->  ( E. c  e.  ZZ  E. d  e.  ZZ  (
( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  <->  E. c  e.  ZZ  E. d  e.  ZZ  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) ) )
17 oveq1 5876 . . . . . . . . 9  |-  ( b  =  B  ->  (
b ^ 2 )  =  ( B ^
2 ) )
1817oveq2d 5885 . . . . . . . 8  |-  ( b  =  B  ->  (
( A ^ 2 )  +  ( b ^ 2 ) )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
1918oveq1d 5884 . . . . . . 7  |-  ( b  =  B  ->  (
( ( A ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
2019eqeq2d 2189 . . . . . 6  |-  ( b  =  B  ->  (
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  <->  ( (
( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) ) )
21202rexbidv 2502 . . . . 5  |-  ( b  =  B  ->  ( E. c  e.  ZZ  E. d  e.  ZZ  (
( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  <->  E. c  e.  ZZ  E. d  e.  ZZ  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) ) )
2216, 21rspc2ev 2856 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  E. c  e.  ZZ  E. d  e.  ZZ  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
23223expa 1203 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  E. c  e.  ZZ  E. d  e.  ZZ  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
24 4sq.1 . . . 4  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
25244sqlem2 12370 . . 3  |-  ( ( ( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
2623, 25sylibr 134 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  E. c  e.  ZZ  E. d  e.  ZZ  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )  ->  ( (
( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  e.  S )
2711, 26sylan2 286 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   {cab 2163   E.wrex 2456  (class class class)co 5869    + caddc 7805   2c2 8959   ZZcz 9242   ^cexp 10505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432  df-exp 10506
This theorem is referenced by:  4sqlem4a  12372
  Copyright terms: Public domain W3C validator