ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodnegadd Unicode version

Theorem lmodnegadd 14213
Description: Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
lmodnegadd.v  |-  V  =  ( Base `  W
)
lmodnegadd.p  |-  .+  =  ( +g  `  W )
lmodnegadd.t  |-  .x.  =  ( .s `  W )
lmodnegadd.n  |-  N  =  ( invg `  W )
lmodnegadd.r  |-  R  =  (Scalar `  W )
lmodnegadd.k  |-  K  =  ( Base `  R
)
lmodnegadd.i  |-  I  =  ( invg `  R )
lmodnegadd.w  |-  ( ph  ->  W  e.  LMod )
lmodnegadd.a  |-  ( ph  ->  A  e.  K )
lmodnegadd.b  |-  ( ph  ->  B  e.  K )
lmodnegadd.x  |-  ( ph  ->  X  e.  V )
lmodnegadd.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
lmodnegadd  |-  ( ph  ->  ( N `  (
( A  .x.  X
)  .+  ( B  .x.  Y ) ) )  =  ( ( ( I `  A ) 
.x.  X )  .+  ( ( I `  B )  .x.  Y
) ) )

Proof of Theorem lmodnegadd
StepHypRef Expression
1 lmodnegadd.w . . . 4  |-  ( ph  ->  W  e.  LMod )
2 lmodabl 14211 . . . 4  |-  ( W  e.  LMod  ->  W  e. 
Abel )
31, 2syl 14 . . 3  |-  ( ph  ->  W  e.  Abel )
4 lmodnegadd.a . . . 4  |-  ( ph  ->  A  e.  K )
5 lmodnegadd.x . . . 4  |-  ( ph  ->  X  e.  V )
6 lmodnegadd.v . . . . 5  |-  V  =  ( Base `  W
)
7 lmodnegadd.r . . . . 5  |-  R  =  (Scalar `  W )
8 lmodnegadd.t . . . . 5  |-  .x.  =  ( .s `  W )
9 lmodnegadd.k . . . . 5  |-  K  =  ( Base `  R
)
106, 7, 8, 9lmodvscl 14182 . . . 4  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  X  e.  V )  ->  ( A  .x.  X )  e.  V )
111, 4, 5, 10syl3anc 1250 . . 3  |-  ( ph  ->  ( A  .x.  X
)  e.  V )
12 lmodnegadd.b . . . 4  |-  ( ph  ->  B  e.  K )
13 lmodnegadd.y . . . 4  |-  ( ph  ->  Y  e.  V )
146, 7, 8, 9lmodvscl 14182 . . . 4  |-  ( ( W  e.  LMod  /\  B  e.  K  /\  Y  e.  V )  ->  ( B  .x.  Y )  e.  V )
151, 12, 13, 14syl3anc 1250 . . 3  |-  ( ph  ->  ( B  .x.  Y
)  e.  V )
16 lmodnegadd.p . . . 4  |-  .+  =  ( +g  `  W )
17 lmodnegadd.n . . . 4  |-  N  =  ( invg `  W )
186, 16, 17ablinvadd 13761 . . 3  |-  ( ( W  e.  Abel  /\  ( A  .x.  X )  e.  V  /\  ( B 
.x.  Y )  e.  V )  ->  ( N `  ( ( A  .x.  X )  .+  ( B  .x.  Y ) ) )  =  ( ( N `  ( A  .x.  X ) ) 
.+  ( N `  ( B  .x.  Y ) ) ) )
193, 11, 15, 18syl3anc 1250 . 2  |-  ( ph  ->  ( N `  (
( A  .x.  X
)  .+  ( B  .x.  Y ) ) )  =  ( ( N `
 ( A  .x.  X ) )  .+  ( N `  ( B 
.x.  Y ) ) ) )
20 lmodnegadd.i . . . 4  |-  I  =  ( invg `  R )
216, 7, 8, 17, 9, 20, 1, 5, 4lmodvsneg 14208 . . 3  |-  ( ph  ->  ( N `  ( A  .x.  X ) )  =  ( ( I `
 A )  .x.  X ) )
226, 7, 8, 17, 9, 20, 1, 13, 12lmodvsneg 14208 . . 3  |-  ( ph  ->  ( N `  ( B  .x.  Y ) )  =  ( ( I `
 B )  .x.  Y ) )
2321, 22oveq12d 5985 . 2  |-  ( ph  ->  ( ( N `  ( A  .x.  X ) )  .+  ( N `
 ( B  .x.  Y ) ) )  =  ( ( ( I `  A ) 
.x.  X )  .+  ( ( I `  B )  .x.  Y
) ) )
2419, 23eqtrd 2240 1  |-  ( ph  ->  ( N `  (
( A  .x.  X
)  .+  ( B  .x.  Y ) ) )  =  ( ( ( I `  A ) 
.x.  X )  .+  ( ( I `  B )  .x.  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024  Scalarcsca 13027   .scvsca 13028   invgcminusg 13448   Abelcabl 13736   LModclmod 14164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-sca 13040  df-vsca 13041  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-cmn 13737  df-abl 13738  df-mgp 13798  df-ur 13837  df-ring 13875  df-lmod 14166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator