![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodnegadd | Unicode version |
Description: Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.) |
Ref | Expression |
---|---|
lmodnegadd.v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmodnegadd.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmodnegadd.t |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmodnegadd.n |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmodnegadd.r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmodnegadd.k |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmodnegadd.i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmodnegadd.w |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmodnegadd.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmodnegadd.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmodnegadd.x |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmodnegadd.y |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
lmodnegadd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodnegadd.w |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | lmodabl 13523 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | lmodnegadd.a |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | lmodnegadd.x |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | lmodnegadd.v |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | lmodnegadd.r |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | lmodnegadd.t |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | lmodnegadd.k |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 6, 7, 8, 9 | lmodvscl 13494 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 1, 4, 5, 10 | syl3anc 1248 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | lmodnegadd.b |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | lmodnegadd.y |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 6, 7, 8, 9 | lmodvscl 13494 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 1, 12, 13, 14 | syl3anc 1248 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | lmodnegadd.p |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | lmodnegadd.n |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
18 | 6, 16, 17 | ablinvadd 13147 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 3, 11, 15, 18 | syl3anc 1248 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | lmodnegadd.i |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
21 | 6, 7, 8, 17, 9, 20, 1, 5, 4 | lmodvsneg 13520 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 6, 7, 8, 17, 9, 20, 1, 13, 12 | lmodvsneg 13520 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 21, 22 | oveq12d 5906 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 19, 23 | eqtrd 2220 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-pre-ltirr 7937 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8008 df-mnf 8009 df-ltxr 8011 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-ndx 12479 df-slot 12480 df-base 12482 df-sets 12483 df-plusg 12564 df-mulr 12565 df-sca 12567 df-vsca 12568 df-0g 12725 df-mgm 12794 df-sgrp 12827 df-mnd 12840 df-grp 12902 df-minusg 12903 df-cmn 13123 df-abl 13124 df-mgp 13173 df-ur 13212 df-ring 13250 df-lmod 13478 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |