ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodnegadd Unicode version

Theorem lmodnegadd 13426
Description: Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
lmodnegadd.v  |-  V  =  ( Base `  W
)
lmodnegadd.p  |-  .+  =  ( +g  `  W )
lmodnegadd.t  |-  .x.  =  ( .s `  W )
lmodnegadd.n  |-  N  =  ( invg `  W )
lmodnegadd.r  |-  R  =  (Scalar `  W )
lmodnegadd.k  |-  K  =  ( Base `  R
)
lmodnegadd.i  |-  I  =  ( invg `  R )
lmodnegadd.w  |-  ( ph  ->  W  e.  LMod )
lmodnegadd.a  |-  ( ph  ->  A  e.  K )
lmodnegadd.b  |-  ( ph  ->  B  e.  K )
lmodnegadd.x  |-  ( ph  ->  X  e.  V )
lmodnegadd.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
lmodnegadd  |-  ( ph  ->  ( N `  (
( A  .x.  X
)  .+  ( B  .x.  Y ) ) )  =  ( ( ( I `  A ) 
.x.  X )  .+  ( ( I `  B )  .x.  Y
) ) )

Proof of Theorem lmodnegadd
StepHypRef Expression
1 lmodnegadd.w . . . 4  |-  ( ph  ->  W  e.  LMod )
2 lmodabl 13424 . . . 4  |-  ( W  e.  LMod  ->  W  e. 
Abel )
31, 2syl 14 . . 3  |-  ( ph  ->  W  e.  Abel )
4 lmodnegadd.a . . . 4  |-  ( ph  ->  A  e.  K )
5 lmodnegadd.x . . . 4  |-  ( ph  ->  X  e.  V )
6 lmodnegadd.v . . . . 5  |-  V  =  ( Base `  W
)
7 lmodnegadd.r . . . . 5  |-  R  =  (Scalar `  W )
8 lmodnegadd.t . . . . 5  |-  .x.  =  ( .s `  W )
9 lmodnegadd.k . . . . 5  |-  K  =  ( Base `  R
)
106, 7, 8, 9lmodvscl 13395 . . . 4  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  X  e.  V )  ->  ( A  .x.  X )  e.  V )
111, 4, 5, 10syl3anc 1238 . . 3  |-  ( ph  ->  ( A  .x.  X
)  e.  V )
12 lmodnegadd.b . . . 4  |-  ( ph  ->  B  e.  K )
13 lmodnegadd.y . . . 4  |-  ( ph  ->  Y  e.  V )
146, 7, 8, 9lmodvscl 13395 . . . 4  |-  ( ( W  e.  LMod  /\  B  e.  K  /\  Y  e.  V )  ->  ( B  .x.  Y )  e.  V )
151, 12, 13, 14syl3anc 1238 . . 3  |-  ( ph  ->  ( B  .x.  Y
)  e.  V )
16 lmodnegadd.p . . . 4  |-  .+  =  ( +g  `  W )
17 lmodnegadd.n . . . 4  |-  N  =  ( invg `  W )
186, 16, 17ablinvadd 13113 . . 3  |-  ( ( W  e.  Abel  /\  ( A  .x.  X )  e.  V  /\  ( B 
.x.  Y )  e.  V )  ->  ( N `  ( ( A  .x.  X )  .+  ( B  .x.  Y ) ) )  =  ( ( N `  ( A  .x.  X ) ) 
.+  ( N `  ( B  .x.  Y ) ) ) )
193, 11, 15, 18syl3anc 1238 . 2  |-  ( ph  ->  ( N `  (
( A  .x.  X
)  .+  ( B  .x.  Y ) ) )  =  ( ( N `
 ( A  .x.  X ) )  .+  ( N `  ( B 
.x.  Y ) ) ) )
20 lmodnegadd.i . . . 4  |-  I  =  ( invg `  R )
216, 7, 8, 17, 9, 20, 1, 5, 4lmodvsneg 13421 . . 3  |-  ( ph  ->  ( N `  ( A  .x.  X ) )  =  ( ( I `
 A )  .x.  X ) )
226, 7, 8, 17, 9, 20, 1, 13, 12lmodvsneg 13421 . . 3  |-  ( ph  ->  ( N `  ( B  .x.  Y ) )  =  ( ( I `
 B )  .x.  Y ) )
2321, 22oveq12d 5893 . 2  |-  ( ph  ->  ( ( N `  ( A  .x.  X ) )  .+  ( N `
 ( B  .x.  Y ) ) )  =  ( ( ( I `  A ) 
.x.  X )  .+  ( ( I `  B )  .x.  Y
) ) )
2419, 23eqtrd 2210 1  |-  ( ph  ->  ( N `  (
( A  .x.  X
)  .+  ( B  .x.  Y ) ) )  =  ( ( ( I `  A ) 
.x.  X )  .+  ( ( I `  B )  .x.  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   ` cfv 5217  (class class class)co 5875   Basecbs 12462   +g cplusg 12536  Scalarcsca 12539   .scvsca 12540   invgcminusg 12878   Abelcabl 13089   LModclmod 13377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-ltxr 7997  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-ndx 12465  df-slot 12466  df-base 12468  df-sets 12469  df-plusg 12549  df-mulr 12550  df-sca 12552  df-vsca 12553  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-minusg 12881  df-cmn 13090  df-abl 13091  df-mgp 13131  df-ur 13143  df-ring 13181  df-lmod 13379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator