ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvadd Unicode version

Theorem grpinvadd 13153
Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.)
Hypotheses
Ref Expression
grpinvadd.b  |-  B  =  ( Base `  G
)
grpinvadd.p  |-  .+  =  ( +g  `  G )
grpinvadd.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvadd  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `
 Y )  .+  ( N `  X ) ) )

Proof of Theorem grpinvadd
StepHypRef Expression
1 simp1 999 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  G  e.  Grp )
2 simp2 1000 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3 simp3 1001 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
4 grpinvadd.b . . . . . . 7  |-  B  =  ( Base `  G
)
5 grpinvadd.n . . . . . . 7  |-  N  =  ( invg `  G )
64, 5grpinvcl 13123 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
763adant2 1018 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
84, 5grpinvcl 13123 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
983adant3 1019 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  X
)  e.  B )
10 grpinvadd.p . . . . . 6  |-  .+  =  ( +g  `  G )
114, 10grpcl 13083 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N `  Y )  e.  B  /\  ( N `  X )  e.  B )  ->  (
( N `  Y
)  .+  ( N `  X ) )  e.  B )
121, 7, 9, 11syl3anc 1249 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  Y )  .+  ( N `  X )
)  e.  B )
134, 10grpass 13084 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  ( ( N `  Y )  .+  ( N `  X )
)  e.  B ) )  ->  ( ( X  .+  Y )  .+  ( ( N `  Y )  .+  ( N `  X )
) )  =  ( X  .+  ( Y 
.+  ( ( N `
 Y )  .+  ( N `  X ) ) ) ) )
141, 2, 3, 12, 13syl13anc 1251 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .+  (
( N `  Y
)  .+  ( N `  X ) ) )  =  ( X  .+  ( Y  .+  ( ( N `  Y ) 
.+  ( N `  X ) ) ) ) )
15 eqid 2193 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
164, 10, 15, 5grprinv 13126 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( Y  .+  ( N `  Y )
)  =  ( 0g
`  G ) )
17163adant2 1018 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .+  ( N `  Y )
)  =  ( 0g
`  G ) )
1817oveq1d 5934 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( Y  .+  ( N `  Y ) )  .+  ( N `
 X ) )  =  ( ( 0g
`  G )  .+  ( N `  X ) ) )
194, 10grpass 13084 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  ( N `  Y
)  e.  B  /\  ( N `  X )  e.  B ) )  ->  ( ( Y 
.+  ( N `  Y ) )  .+  ( N `  X ) )  =  ( Y 
.+  ( ( N `
 Y )  .+  ( N `  X ) ) ) )
201, 3, 7, 9, 19syl13anc 1251 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( Y  .+  ( N `  Y ) )  .+  ( N `
 X ) )  =  ( Y  .+  ( ( N `  Y )  .+  ( N `  X )
) ) )
214, 10, 15grplid 13106 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N `  X )  e.  B )  -> 
( ( 0g `  G )  .+  ( N `  X )
)  =  ( N `
 X ) )
221, 9, 21syl2anc 411 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( 0g `  G )  .+  ( N `  X )
)  =  ( N `
 X ) )
2318, 20, 223eqtr3d 2234 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .+  (
( N `  Y
)  .+  ( N `  X ) ) )  =  ( N `  X ) )
2423oveq2d 5935 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( Y  .+  ( ( N `
 Y )  .+  ( N `  X ) ) ) )  =  ( X  .+  ( N `  X )
) )
254, 10, 15, 5grprinv 13126 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( N `  X )
)  =  ( 0g
`  G ) )
26253adant3 1019 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( N `  X )
)  =  ( 0g
`  G ) )
2714, 24, 263eqtrd 2230 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .+  (
( N `  Y
)  .+  ( N `  X ) ) )  =  ( 0g `  G ) )
284, 10grpcl 13083 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
294, 10, 15, 5grpinvid1 13127 . . 3  |-  ( ( G  e.  Grp  /\  ( X  .+  Y )  e.  B  /\  (
( N `  Y
)  .+  ( N `  X ) )  e.  B )  ->  (
( N `  ( X  .+  Y ) )  =  ( ( N `
 Y )  .+  ( N `  X ) )  <->  ( ( X 
.+  Y )  .+  ( ( N `  Y )  .+  ( N `  X )
) )  =  ( 0g `  G ) ) )
301, 28, 12, 29syl3anc 1249 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  ( X  .+  Y ) )  =  ( ( N `  Y ) 
.+  ( N `  X ) )  <->  ( ( X  .+  Y )  .+  ( ( N `  Y )  .+  ( N `  X )
) )  =  ( 0g `  G ) ) )
3127, 30mpbird 167 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `
 Y )  .+  ( N `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   0gc0g 12870   Grpcgrp 13075   invgcminusg 13076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079
This theorem is referenced by:  grpinvsub  13157  mulgaddcomlem  13218  mulginvcom  13220  mulgdir  13227  eqger  13297  eqgcpbl  13301  ablinvadd  13383  ablsub2inv  13384  invghm  13402  rdivmuldivd  13643
  Copyright terms: Public domain W3C validator