| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvadd | Unicode version | ||
| Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) |
| Ref | Expression |
|---|---|
| grpinvadd.b |
|
| grpinvadd.p |
|
| grpinvadd.n |
|
| Ref | Expression |
|---|---|
| grpinvadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 |
. . . 4
| |
| 2 | simp2 1022 |
. . . 4
| |
| 3 | simp3 1023 |
. . . 4
| |
| 4 | grpinvadd.b |
. . . . . . 7
| |
| 5 | grpinvadd.n |
. . . . . . 7
| |
| 6 | 4, 5 | grpinvcl 13589 |
. . . . . 6
|
| 7 | 6 | 3adant2 1040 |
. . . . 5
|
| 8 | 4, 5 | grpinvcl 13589 |
. . . . . 6
|
| 9 | 8 | 3adant3 1041 |
. . . . 5
|
| 10 | grpinvadd.p |
. . . . . 6
| |
| 11 | 4, 10 | grpcl 13549 |
. . . . 5
|
| 12 | 1, 7, 9, 11 | syl3anc 1271 |
. . . 4
|
| 13 | 4, 10 | grpass 13550 |
. . . 4
|
| 14 | 1, 2, 3, 12, 13 | syl13anc 1273 |
. . 3
|
| 15 | eqid 2229 |
. . . . . . . 8
| |
| 16 | 4, 10, 15, 5 | grprinv 13592 |
. . . . . . 7
|
| 17 | 16 | 3adant2 1040 |
. . . . . 6
|
| 18 | 17 | oveq1d 6022 |
. . . . 5
|
| 19 | 4, 10 | grpass 13550 |
. . . . . 6
|
| 20 | 1, 3, 7, 9, 19 | syl13anc 1273 |
. . . . 5
|
| 21 | 4, 10, 15 | grplid 13572 |
. . . . . 6
|
| 22 | 1, 9, 21 | syl2anc 411 |
. . . . 5
|
| 23 | 18, 20, 22 | 3eqtr3d 2270 |
. . . 4
|
| 24 | 23 | oveq2d 6023 |
. . 3
|
| 25 | 4, 10, 15, 5 | grprinv 13592 |
. . . 4
|
| 26 | 25 | 3adant3 1041 |
. . 3
|
| 27 | 14, 24, 26 | 3eqtrd 2266 |
. 2
|
| 28 | 4, 10 | grpcl 13549 |
. . 3
|
| 29 | 4, 10, 15, 5 | grpinvid1 13593 |
. . 3
|
| 30 | 1, 28, 12, 29 | syl3anc 1271 |
. 2
|
| 31 | 27, 30 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-inn 9119 df-2 9177 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 |
| This theorem is referenced by: grpinvsub 13623 mulgaddcomlem 13690 mulginvcom 13692 mulgdir 13699 eqger 13769 eqgcpbl 13773 ablinvadd 13855 ablsub2inv 13856 invghm 13874 rdivmuldivd 14116 |
| Copyright terms: Public domain | W3C validator |