Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpinvadd | Unicode version |
Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) |
Ref | Expression |
---|---|
grpinvadd.b | |
grpinvadd.p | |
grpinvadd.n |
Ref | Expression |
---|---|
grpinvadd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 993 | . . . 4 | |
2 | simp2 994 | . . . 4 | |
3 | simp3 995 | . . . 4 | |
4 | grpinvadd.b | . . . . . . 7 | |
5 | grpinvadd.n | . . . . . . 7 | |
6 | 4, 5 | grpinvcl 12773 | . . . . . 6 |
7 | 6 | 3adant2 1012 | . . . . 5 |
8 | 4, 5 | grpinvcl 12773 | . . . . . 6 |
9 | 8 | 3adant3 1013 | . . . . 5 |
10 | grpinvadd.p | . . . . . 6 | |
11 | 4, 10 | grpcl 12738 | . . . . 5 |
12 | 1, 7, 9, 11 | syl3anc 1234 | . . . 4 |
13 | 4, 10 | grpass 12739 | . . . 4 |
14 | 1, 2, 3, 12, 13 | syl13anc 1236 | . . 3 |
15 | eqid 2171 | . . . . . . . 8 | |
16 | 4, 10, 15, 5 | grprinv 12775 | . . . . . . 7 |
17 | 16 | 3adant2 1012 | . . . . . 6 |
18 | 17 | oveq1d 5872 | . . . . 5 |
19 | 4, 10 | grpass 12739 | . . . . . 6 |
20 | 1, 3, 7, 9, 19 | syl13anc 1236 | . . . . 5 |
21 | 4, 10, 15 | grplid 12758 | . . . . . 6 |
22 | 1, 9, 21 | syl2anc 409 | . . . . 5 |
23 | 18, 20, 22 | 3eqtr3d 2212 | . . . 4 |
24 | 23 | oveq2d 5873 | . . 3 |
25 | 4, 10, 15, 5 | grprinv 12775 | . . . 4 |
26 | 25 | 3adant3 1013 | . . 3 |
27 | 14, 24, 26 | 3eqtrd 2208 | . 2 |
28 | 4, 10 | grpcl 12738 | . . 3 |
29 | 4, 10, 15, 5 | grpinvid1 12776 | . . 3 |
30 | 1, 28, 12, 29 | syl3anc 1234 | . 2 |
31 | 27, 30 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 974 wceq 1349 wcel 2142 cfv 5200 (class class class)co 5857 cbs 12420 cplusg 12484 c0g 12618 cgrp 12730 cminusg 12731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-coll 4105 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-cnex 7869 ax-resscn 7870 ax-1re 7872 ax-addrcl 7875 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ral 2454 df-rex 2455 df-reu 2456 df-rmo 2457 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-br 3991 df-opab 4052 df-mpt 4053 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-f1 5205 df-fo 5206 df-f1o 5207 df-fv 5208 df-riota 5813 df-ov 5860 df-inn 8883 df-2 8941 df-ndx 12423 df-slot 12424 df-base 12426 df-plusg 12497 df-0g 12620 df-mgm 12632 df-sgrp 12665 df-mnd 12675 df-grp 12733 df-minusg 12734 |
This theorem is referenced by: grpinvsub 12803 mulgaddcomlem 12856 mulginvcom 12858 mulgdir 12865 |
Copyright terms: Public domain | W3C validator |