ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvadd Unicode version

Theorem grpinvadd 13454
Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.)
Hypotheses
Ref Expression
grpinvadd.b  |-  B  =  ( Base `  G
)
grpinvadd.p  |-  .+  =  ( +g  `  G )
grpinvadd.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvadd  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `
 Y )  .+  ( N `  X ) ) )

Proof of Theorem grpinvadd
StepHypRef Expression
1 simp1 1000 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  G  e.  Grp )
2 simp2 1001 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3 simp3 1002 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
4 grpinvadd.b . . . . . . 7  |-  B  =  ( Base `  G
)
5 grpinvadd.n . . . . . . 7  |-  N  =  ( invg `  G )
64, 5grpinvcl 13424 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
763adant2 1019 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
84, 5grpinvcl 13424 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
983adant3 1020 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  X
)  e.  B )
10 grpinvadd.p . . . . . 6  |-  .+  =  ( +g  `  G )
114, 10grpcl 13384 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N `  Y )  e.  B  /\  ( N `  X )  e.  B )  ->  (
( N `  Y
)  .+  ( N `  X ) )  e.  B )
121, 7, 9, 11syl3anc 1250 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  Y )  .+  ( N `  X )
)  e.  B )
134, 10grpass 13385 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  ( ( N `  Y )  .+  ( N `  X )
)  e.  B ) )  ->  ( ( X  .+  Y )  .+  ( ( N `  Y )  .+  ( N `  X )
) )  =  ( X  .+  ( Y 
.+  ( ( N `
 Y )  .+  ( N `  X ) ) ) ) )
141, 2, 3, 12, 13syl13anc 1252 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .+  (
( N `  Y
)  .+  ( N `  X ) ) )  =  ( X  .+  ( Y  .+  ( ( N `  Y ) 
.+  ( N `  X ) ) ) ) )
15 eqid 2206 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
164, 10, 15, 5grprinv 13427 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( Y  .+  ( N `  Y )
)  =  ( 0g
`  G ) )
17163adant2 1019 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .+  ( N `  Y )
)  =  ( 0g
`  G ) )
1817oveq1d 5966 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( Y  .+  ( N `  Y ) )  .+  ( N `
 X ) )  =  ( ( 0g
`  G )  .+  ( N `  X ) ) )
194, 10grpass 13385 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  ( N `  Y
)  e.  B  /\  ( N `  X )  e.  B ) )  ->  ( ( Y 
.+  ( N `  Y ) )  .+  ( N `  X ) )  =  ( Y 
.+  ( ( N `
 Y )  .+  ( N `  X ) ) ) )
201, 3, 7, 9, 19syl13anc 1252 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( Y  .+  ( N `  Y ) )  .+  ( N `
 X ) )  =  ( Y  .+  ( ( N `  Y )  .+  ( N `  X )
) ) )
214, 10, 15grplid 13407 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N `  X )  e.  B )  -> 
( ( 0g `  G )  .+  ( N `  X )
)  =  ( N `
 X ) )
221, 9, 21syl2anc 411 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( 0g `  G )  .+  ( N `  X )
)  =  ( N `
 X ) )
2318, 20, 223eqtr3d 2247 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .+  (
( N `  Y
)  .+  ( N `  X ) ) )  =  ( N `  X ) )
2423oveq2d 5967 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( Y  .+  ( ( N `
 Y )  .+  ( N `  X ) ) ) )  =  ( X  .+  ( N `  X )
) )
254, 10, 15, 5grprinv 13427 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( N `  X )
)  =  ( 0g
`  G ) )
26253adant3 1020 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( N `  X )
)  =  ( 0g
`  G ) )
2714, 24, 263eqtrd 2243 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .+  (
( N `  Y
)  .+  ( N `  X ) ) )  =  ( 0g `  G ) )
284, 10grpcl 13384 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
294, 10, 15, 5grpinvid1 13428 . . 3  |-  ( ( G  e.  Grp  /\  ( X  .+  Y )  e.  B  /\  (
( N `  Y
)  .+  ( N `  X ) )  e.  B )  ->  (
( N `  ( X  .+  Y ) )  =  ( ( N `
 Y )  .+  ( N `  X ) )  <->  ( ( X 
.+  Y )  .+  ( ( N `  Y )  .+  ( N `  X )
) )  =  ( 0g `  G ) ) )
301, 28, 12, 29syl3anc 1250 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  ( X  .+  Y ) )  =  ( ( N `  Y ) 
.+  ( N `  X ) )  <->  ( ( X  .+  Y )  .+  ( ( N `  Y )  .+  ( N `  X )
) )  =  ( 0g `  G ) ) )
3127, 30mpbird 167 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `
 Y )  .+  ( N `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   ` cfv 5276  (class class class)co 5951   Basecbs 12876   +g cplusg 12953   0gc0g 13132   Grpcgrp 13376   invgcminusg 13377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-inn 9044  df-2 9102  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380
This theorem is referenced by:  grpinvsub  13458  mulgaddcomlem  13525  mulginvcom  13527  mulgdir  13534  eqger  13604  eqgcpbl  13608  ablinvadd  13690  ablsub2inv  13691  invghm  13709  rdivmuldivd  13950
  Copyright terms: Public domain W3C validator