| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvadd | Unicode version | ||
| Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) |
| Ref | Expression |
|---|---|
| grpinvadd.b |
|
| grpinvadd.p |
|
| grpinvadd.n |
|
| Ref | Expression |
|---|---|
| grpinvadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. . . 4
| |
| 2 | simp2 1001 |
. . . 4
| |
| 3 | simp3 1002 |
. . . 4
| |
| 4 | grpinvadd.b |
. . . . . . 7
| |
| 5 | grpinvadd.n |
. . . . . . 7
| |
| 6 | 4, 5 | grpinvcl 13424 |
. . . . . 6
|
| 7 | 6 | 3adant2 1019 |
. . . . 5
|
| 8 | 4, 5 | grpinvcl 13424 |
. . . . . 6
|
| 9 | 8 | 3adant3 1020 |
. . . . 5
|
| 10 | grpinvadd.p |
. . . . . 6
| |
| 11 | 4, 10 | grpcl 13384 |
. . . . 5
|
| 12 | 1, 7, 9, 11 | syl3anc 1250 |
. . . 4
|
| 13 | 4, 10 | grpass 13385 |
. . . 4
|
| 14 | 1, 2, 3, 12, 13 | syl13anc 1252 |
. . 3
|
| 15 | eqid 2206 |
. . . . . . . 8
| |
| 16 | 4, 10, 15, 5 | grprinv 13427 |
. . . . . . 7
|
| 17 | 16 | 3adant2 1019 |
. . . . . 6
|
| 18 | 17 | oveq1d 5966 |
. . . . 5
|
| 19 | 4, 10 | grpass 13385 |
. . . . . 6
|
| 20 | 1, 3, 7, 9, 19 | syl13anc 1252 |
. . . . 5
|
| 21 | 4, 10, 15 | grplid 13407 |
. . . . . 6
|
| 22 | 1, 9, 21 | syl2anc 411 |
. . . . 5
|
| 23 | 18, 20, 22 | 3eqtr3d 2247 |
. . . 4
|
| 24 | 23 | oveq2d 5967 |
. . 3
|
| 25 | 4, 10, 15, 5 | grprinv 13427 |
. . . 4
|
| 26 | 25 | 3adant3 1020 |
. . 3
|
| 27 | 14, 24, 26 | 3eqtrd 2243 |
. 2
|
| 28 | 4, 10 | grpcl 13384 |
. . 3
|
| 29 | 4, 10, 15, 5 | grpinvid1 13428 |
. . 3
|
| 30 | 1, 28, 12, 29 | syl3anc 1250 |
. 2
|
| 31 | 27, 30 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-inn 9044 df-2 9102 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 |
| This theorem is referenced by: grpinvsub 13458 mulgaddcomlem 13525 mulginvcom 13527 mulgdir 13534 eqger 13604 eqgcpbl 13608 ablinvadd 13690 ablsub2inv 13691 invghm 13709 rdivmuldivd 13950 |
| Copyright terms: Public domain | W3C validator |