| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abrexex | GIF version | ||
| Description: Existence of a class abstraction of existentially restricted sets. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be thought of as 𝐵(𝑥). This simple-looking theorem is actually quite powerful and appears to involve the Axiom of Replacement in an intrinsic way, as can be seen by tracing back through the path mptexg 5816, funex 5814, fnex 5813, resfunexg 5812, and funimaexg 5363. See also abrexex2 6216. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| abrexex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| abrexex | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | rnmpt 4931 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| 3 | abrexex.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 4 | 3 | mptex 5817 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| 5 | 4 | rnex 4951 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| 6 | 2, 5 | eqeltrri 2280 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 {cab 2192 ∃wrex 2486 Vcvv 2773 ↦ cmpt 4109 ran crn 4680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 |
| This theorem is referenced by: ab2rexex 6223 shftfval 11176 |
| Copyright terms: Public domain | W3C validator |