ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcompig Unicode version

Theorem addcompig 7455
Description: Addition of positive integers is commutative. (Contributed by Jim Kingdon, 26-Aug-2019.)
Assertion
Ref Expression
addcompig  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( B  +N  A ) )

Proof of Theorem addcompig
StepHypRef Expression
1 pinn 7435 . . 3  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 7435 . . 3  |-  ( B  e.  N.  ->  B  e.  om )
3 nnacom 6580 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  =  ( B  +o  A ) )
41, 2, 3syl2an 289 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +o  B
)  =  ( B  +o  A ) )
5 addpiord 7442 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
6 addpiord 7442 . . 3  |-  ( ( B  e.  N.  /\  A  e.  N. )  ->  ( B  +N  A
)  =  ( B  +o  A ) )
76ancoms 268 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( B  +N  A
)  =  ( B  +o  A ) )
84, 5, 73eqtr4d 2249 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( B  +N  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   omcom 4643  (class class class)co 5954    +o coa 6509   N.cnpi 7398    +N cpli 7399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-oadd 6516  df-ni 7430  df-pli 7431
This theorem is referenced by:  addcomnqg  7507
  Copyright terms: Public domain W3C validator