Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addpiord | Unicode version |
Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.) |
Ref | Expression |
---|---|
addpiord |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4611 | . 2 | |
2 | fvres 5485 | . . 3 | |
3 | df-ov 5817 | . . . 4 | |
4 | df-pli 7204 | . . . . 5 | |
5 | 4 | fveq1i 5462 | . . . 4 |
6 | 3, 5 | eqtri 2175 | . . 3 |
7 | df-ov 5817 | . . 3 | |
8 | 2, 6, 7 | 3eqtr4g 2212 | . 2 |
9 | 1, 8 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1332 wcel 2125 cop 3559 cxp 4577 cres 4581 cfv 5163 (class class class)co 5814 coa 6350 cnpi 7171 cpli 7172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-xp 4585 df-res 4591 df-iota 5128 df-fv 5171 df-ov 5817 df-pli 7204 |
This theorem is referenced by: addclpi 7226 addcompig 7228 addasspig 7229 distrpig 7232 addcanpig 7233 addnidpig 7235 ltexpi 7236 ltapig 7237 1lt2pi 7239 indpi 7241 archnqq 7316 prarloclemarch2 7318 nqnq0a 7353 |
Copyright terms: Public domain | W3C validator |