ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addpiord Unicode version

Theorem addpiord 7066
Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
addpiord  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )

Proof of Theorem addpiord
StepHypRef Expression
1 opelxpi 4529 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
2 fvres 5397 . . 3  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( (  +o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )  =  (  +o  `  <. A ,  B >. )
)
3 df-ov 5729 . . . 4  |-  ( A  +N  B )  =  (  +N  `  <. A ,  B >. )
4 df-pli 7055 . . . . 5  |-  +N  =  (  +o  |`  ( N.  X.  N. ) )
54fveq1i 5374 . . . 4  |-  (  +N 
`  <. A ,  B >. )  =  ( (  +o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )
63, 5eqtri 2133 . . 3  |-  ( A  +N  B )  =  ( (  +o  |`  ( N.  X.  N. ) ) `
 <. A ,  B >. )
7 df-ov 5729 . . 3  |-  ( A  +o  B )  =  (  +o  `  <. A ,  B >. )
82, 6, 73eqtr4g 2170 . 2  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( A  +N  B )  =  ( A  +o  B ) )
91, 8syl 14 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1312    e. wcel 1461   <.cop 3494    X. cxp 4495    |` cres 4499   ` cfv 5079  (class class class)co 5726    +o coa 6262   N.cnpi 7022    +N cpli 7023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-xp 4503  df-res 4509  df-iota 5044  df-fv 5087  df-ov 5729  df-pli 7055
This theorem is referenced by:  addclpi  7077  addcompig  7079  addasspig  7080  distrpig  7083  addcanpig  7084  addnidpig  7086  ltexpi  7087  ltapig  7088  1lt2pi  7090  indpi  7092  archnqq  7167  prarloclemarch2  7169  nqnq0a  7204
  Copyright terms: Public domain W3C validator