ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addpiord Unicode version

Theorem addpiord 7344
Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
addpiord  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )

Proof of Theorem addpiord
StepHypRef Expression
1 opelxpi 4676 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
2 fvres 5558 . . 3  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( (  +o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )  =  (  +o  `  <. A ,  B >. )
)
3 df-ov 5898 . . . 4  |-  ( A  +N  B )  =  (  +N  `  <. A ,  B >. )
4 df-pli 7333 . . . . 5  |-  +N  =  (  +o  |`  ( N.  X.  N. ) )
54fveq1i 5535 . . . 4  |-  (  +N 
`  <. A ,  B >. )  =  ( (  +o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )
63, 5eqtri 2210 . . 3  |-  ( A  +N  B )  =  ( (  +o  |`  ( N.  X.  N. ) ) `
 <. A ,  B >. )
7 df-ov 5898 . . 3  |-  ( A  +o  B )  =  (  +o  `  <. A ,  B >. )
82, 6, 73eqtr4g 2247 . 2  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( A  +N  B )  =  ( A  +o  B ) )
91, 8syl 14 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   <.cop 3610    X. cxp 4642    |` cres 4646   ` cfv 5235  (class class class)co 5895    +o coa 6437   N.cnpi 7300    +N cpli 7301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4650  df-res 4656  df-iota 5196  df-fv 5243  df-ov 5898  df-pli 7333
This theorem is referenced by:  addclpi  7355  addcompig  7357  addasspig  7358  distrpig  7361  addcanpig  7362  addnidpig  7364  ltexpi  7365  ltapig  7366  1lt2pi  7368  indpi  7370  archnqq  7445  prarloclemarch2  7447  nqnq0a  7482
  Copyright terms: Public domain W3C validator