ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addpiord Unicode version

Theorem addpiord 7431
Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
addpiord  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )

Proof of Theorem addpiord
StepHypRef Expression
1 opelxpi 4708 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
2 fvres 5602 . . 3  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( (  +o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )  =  (  +o  `  <. A ,  B >. )
)
3 df-ov 5949 . . . 4  |-  ( A  +N  B )  =  (  +N  `  <. A ,  B >. )
4 df-pli 7420 . . . . 5  |-  +N  =  (  +o  |`  ( N.  X.  N. ) )
54fveq1i 5579 . . . 4  |-  (  +N 
`  <. A ,  B >. )  =  ( (  +o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )
63, 5eqtri 2226 . . 3  |-  ( A  +N  B )  =  ( (  +o  |`  ( N.  X.  N. ) ) `
 <. A ,  B >. )
7 df-ov 5949 . . 3  |-  ( A  +o  B )  =  (  +o  `  <. A ,  B >. )
82, 6, 73eqtr4g 2263 . 2  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( A  +N  B )  =  ( A  +o  B ) )
91, 8syl 14 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   <.cop 3636    X. cxp 4674    |` cres 4678   ` cfv 5272  (class class class)co 5946    +o coa 6501   N.cnpi 7387    +N cpli 7388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-xp 4682  df-res 4688  df-iota 5233  df-fv 5280  df-ov 5949  df-pli 7420
This theorem is referenced by:  addclpi  7442  addcompig  7444  addasspig  7445  distrpig  7448  addcanpig  7449  addnidpig  7451  ltexpi  7452  ltapig  7453  1lt2pi  7455  indpi  7457  archnqq  7532  prarloclemarch2  7534  nqnq0a  7569
  Copyright terms: Public domain W3C validator