ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addpiord Unicode version

Theorem addpiord 7383
Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
addpiord  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )

Proof of Theorem addpiord
StepHypRef Expression
1 opelxpi 4695 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
2 fvres 5582 . . 3  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( (  +o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )  =  (  +o  `  <. A ,  B >. )
)
3 df-ov 5925 . . . 4  |-  ( A  +N  B )  =  (  +N  `  <. A ,  B >. )
4 df-pli 7372 . . . . 5  |-  +N  =  (  +o  |`  ( N.  X.  N. ) )
54fveq1i 5559 . . . 4  |-  (  +N 
`  <. A ,  B >. )  =  ( (  +o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )
63, 5eqtri 2217 . . 3  |-  ( A  +N  B )  =  ( (  +o  |`  ( N.  X.  N. ) ) `
 <. A ,  B >. )
7 df-ov 5925 . . 3  |-  ( A  +o  B )  =  (  +o  `  <. A ,  B >. )
82, 6, 73eqtr4g 2254 . 2  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( A  +N  B )  =  ( A  +o  B ) )
91, 8syl 14 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   <.cop 3625    X. cxp 4661    |` cres 4665   ` cfv 5258  (class class class)co 5922    +o coa 6471   N.cnpi 7339    +N cpli 7340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-res 4675  df-iota 5219  df-fv 5266  df-ov 5925  df-pli 7372
This theorem is referenced by:  addclpi  7394  addcompig  7396  addasspig  7397  distrpig  7400  addcanpig  7401  addnidpig  7403  ltexpi  7404  ltapig  7405  1lt2pi  7407  indpi  7409  archnqq  7484  prarloclemarch2  7486  nqnq0a  7521
  Copyright terms: Public domain W3C validator