ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addasspig Unicode version

Theorem addasspig 7233
Description: Addition of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.)
Assertion
Ref Expression
addasspig  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +N  B
)  +N  C )  =  ( A  +N  ( B  +N  C
) ) )

Proof of Theorem addasspig
StepHypRef Expression
1 pinn 7212 . . 3  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 7212 . . 3  |-  ( B  e.  N.  ->  B  e.  om )
3 pinn 7212 . . 3  |-  ( C  e.  N.  ->  C  e.  om )
4 nnaass 6425 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) )
51, 2, 3, 4syl3an 1262 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) )
6 addclpi 7230 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  e.  N. )
7 addpiord 7219 . . . . 5  |-  ( ( ( A  +N  B
)  e.  N.  /\  C  e.  N. )  ->  ( ( A  +N  B )  +N  C
)  =  ( ( A  +N  B )  +o  C ) )
86, 7sylan 281 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  +N  B )  +N  C )  =  ( ( A  +N  B
)  +o  C ) )
9 addpiord 7219 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
109oveq1d 5833 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  +N  B )  +o  C
)  =  ( ( A  +o  B )  +o  C ) )
1110adantr 274 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  +N  B )  +o  C )  =  ( ( A  +o  B
)  +o  C ) )
128, 11eqtrd 2190 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  +N  B )  +N  C )  =  ( ( A  +o  B
)  +o  C ) )
13123impa 1177 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +N  B
)  +N  C )  =  ( ( A  +o  B )  +o  C ) )
14 addclpi 7230 . . . . 5  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  +N  C
)  e.  N. )
15 addpiord 7219 . . . . 5  |-  ( ( A  e.  N.  /\  ( B  +N  C
)  e.  N. )  ->  ( A  +N  ( B  +N  C ) )  =  ( A  +o  ( B  +N  C
) ) )
1614, 15sylan2 284 . . . 4  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  +N  ( B  +N  C
) )  =  ( A  +o  ( B  +N  C ) ) )
17 addpiord 7219 . . . . . 6  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  +N  C
)  =  ( B  +o  C ) )
1817oveq2d 5834 . . . . 5  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( A  +o  ( B  +N  C ) )  =  ( A  +o  ( B  +o  C
) ) )
1918adantl 275 . . . 4  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  +o  ( B  +N  C
) )  =  ( A  +o  ( B  +o  C ) ) )
2016, 19eqtrd 2190 . . 3  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  +N  ( B  +N  C
) )  =  ( A  +o  ( B  +o  C ) ) )
21203impb 1181 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  +N  ( B  +N  C ) )  =  ( A  +o  ( B  +o  C ) ) )
225, 13, 213eqtr4d 2200 1  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +N  B
)  +N  C )  =  ( A  +N  ( B  +N  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1335    e. wcel 2128   omcom 4547  (class class class)co 5818    +o coa 6354   N.cnpi 7175    +N cpli 7176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-oadd 6361  df-ni 7207  df-pli 7208
This theorem is referenced by:  addassnqg  7285
  Copyright terms: Public domain W3C validator