ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addasspig Unicode version

Theorem addasspig 6952
Description: Addition of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.)
Assertion
Ref Expression
addasspig  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +N  B
)  +N  C )  =  ( A  +N  ( B  +N  C
) ) )

Proof of Theorem addasspig
StepHypRef Expression
1 pinn 6931 . . 3  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 6931 . . 3  |-  ( B  e.  N.  ->  B  e.  om )
3 pinn 6931 . . 3  |-  ( C  e.  N.  ->  C  e.  om )
4 nnaass 6262 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) )
51, 2, 3, 4syl3an 1217 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) )
6 addclpi 6949 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  e.  N. )
7 addpiord 6938 . . . . 5  |-  ( ( ( A  +N  B
)  e.  N.  /\  C  e.  N. )  ->  ( ( A  +N  B )  +N  C
)  =  ( ( A  +N  B )  +o  C ) )
86, 7sylan 278 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  +N  B )  +N  C )  =  ( ( A  +N  B
)  +o  C ) )
9 addpiord 6938 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
109oveq1d 5683 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  +N  B )  +o  C
)  =  ( ( A  +o  B )  +o  C ) )
1110adantr 271 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  +N  B )  +o  C )  =  ( ( A  +o  B
)  +o  C ) )
128, 11eqtrd 2121 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  +N  B )  +N  C )  =  ( ( A  +o  B
)  +o  C ) )
13123impa 1139 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +N  B
)  +N  C )  =  ( ( A  +o  B )  +o  C ) )
14 addclpi 6949 . . . . 5  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  +N  C
)  e.  N. )
15 addpiord 6938 . . . . 5  |-  ( ( A  e.  N.  /\  ( B  +N  C
)  e.  N. )  ->  ( A  +N  ( B  +N  C ) )  =  ( A  +o  ( B  +N  C
) ) )
1614, 15sylan2 281 . . . 4  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  +N  ( B  +N  C
) )  =  ( A  +o  ( B  +N  C ) ) )
17 addpiord 6938 . . . . . 6  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  +N  C
)  =  ( B  +o  C ) )
1817oveq2d 5684 . . . . 5  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( A  +o  ( B  +N  C ) )  =  ( A  +o  ( B  +o  C
) ) )
1918adantl 272 . . . 4  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  +o  ( B  +N  C
) )  =  ( A  +o  ( B  +o  C ) ) )
2016, 19eqtrd 2121 . . 3  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  +N  ( B  +N  C
) )  =  ( A  +o  ( B  +o  C ) ) )
21203impb 1140 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  +N  ( B  +N  C ) )  =  ( A  +o  ( B  +o  C ) ) )
225, 13, 213eqtr4d 2131 1  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +N  B
)  +N  C )  =  ( A  +N  ( B  +N  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 925    = wceq 1290    e. wcel 1439   omcom 4420  (class class class)co 5668    +o coa 6194   N.cnpi 6894    +N cpli 6895
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3962  ax-sep 3965  ax-nul 3973  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-iinf 4418
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-nul 3290  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-iun 3740  df-br 3854  df-opab 3908  df-mpt 3909  df-tr 3945  df-id 4131  df-iord 4204  df-on 4206  df-suc 4209  df-iom 4421  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-fv 5038  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-1st 5927  df-2nd 5928  df-recs 6086  df-irdg 6151  df-oadd 6201  df-ni 6926  df-pli 6927
This theorem is referenced by:  addassnqg  7004
  Copyright terms: Public domain W3C validator