| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnacom | Unicode version | ||
| Description: Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnacom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5929 |
. . . . 5
| |
| 2 | oveq2 5930 |
. . . . 5
| |
| 3 | 1, 2 | eqeq12d 2211 |
. . . 4
|
| 4 | 3 | imbi2d 230 |
. . 3
|
| 5 | oveq1 5929 |
. . . . 5
| |
| 6 | oveq2 5930 |
. . . . 5
| |
| 7 | 5, 6 | eqeq12d 2211 |
. . . 4
|
| 8 | oveq1 5929 |
. . . . 5
| |
| 9 | oveq2 5930 |
. . . . 5
| |
| 10 | 8, 9 | eqeq12d 2211 |
. . . 4
|
| 11 | oveq1 5929 |
. . . . 5
| |
| 12 | oveq2 5930 |
. . . . 5
| |
| 13 | 11, 12 | eqeq12d 2211 |
. . . 4
|
| 14 | nna0r 6536 |
. . . . 5
| |
| 15 | nna0 6532 |
. . . . 5
| |
| 16 | 14, 15 | eqtr4d 2232 |
. . . 4
|
| 17 | suceq 4437 |
. . . . . 6
| |
| 18 | oveq2 5930 |
. . . . . . . . . . 11
| |
| 19 | oveq2 5930 |
. . . . . . . . . . . 12
| |
| 20 | suceq 4437 |
. . . . . . . . . . . 12
| |
| 21 | 19, 20 | syl 14 |
. . . . . . . . . . 11
|
| 22 | 18, 21 | eqeq12d 2211 |
. . . . . . . . . 10
|
| 23 | 22 | imbi2d 230 |
. . . . . . . . 9
|
| 24 | oveq2 5930 |
. . . . . . . . . . 11
| |
| 25 | oveq2 5930 |
. . . . . . . . . . . 12
| |
| 26 | suceq 4437 |
. . . . . . . . . . . 12
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . . . . 11
|
| 28 | 24, 27 | eqeq12d 2211 |
. . . . . . . . . 10
|
| 29 | oveq2 5930 |
. . . . . . . . . . 11
| |
| 30 | oveq2 5930 |
. . . . . . . . . . . 12
| |
| 31 | suceq 4437 |
. . . . . . . . . . . 12
| |
| 32 | 30, 31 | syl 14 |
. . . . . . . . . . 11
|
| 33 | 29, 32 | eqeq12d 2211 |
. . . . . . . . . 10
|
| 34 | oveq2 5930 |
. . . . . . . . . . 11
| |
| 35 | oveq2 5930 |
. . . . . . . . . . . 12
| |
| 36 | suceq 4437 |
. . . . . . . . . . . 12
| |
| 37 | 35, 36 | syl 14 |
. . . . . . . . . . 11
|
| 38 | 34, 37 | eqeq12d 2211 |
. . . . . . . . . 10
|
| 39 | peano2 4631 |
. . . . . . . . . . . 12
| |
| 40 | nna0 6532 |
. . . . . . . . . . . 12
| |
| 41 | 39, 40 | syl 14 |
. . . . . . . . . . 11
|
| 42 | nna0 6532 |
. . . . . . . . . . . 12
| |
| 43 | suceq 4437 |
. . . . . . . . . . . 12
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . . . . 11
|
| 45 | 41, 44 | eqtr4d 2232 |
. . . . . . . . . 10
|
| 46 | suceq 4437 |
. . . . . . . . . . . 12
| |
| 47 | nnasuc 6534 |
. . . . . . . . . . . . . 14
| |
| 48 | 39, 47 | sylan 283 |
. . . . . . . . . . . . 13
|
| 49 | nnasuc 6534 |
. . . . . . . . . . . . . 14
| |
| 50 | suceq 4437 |
. . . . . . . . . . . . . 14
| |
| 51 | 49, 50 | syl 14 |
. . . . . . . . . . . . 13
|
| 52 | 48, 51 | eqeq12d 2211 |
. . . . . . . . . . . 12
|
| 53 | 46, 52 | imbitrrid 156 |
. . . . . . . . . . 11
|
| 54 | 53 | expcom 116 |
. . . . . . . . . 10
|
| 55 | 28, 33, 38, 45, 54 | finds2 4637 |
. . . . . . . . 9
|
| 56 | 23, 55 | vtoclga 2830 |
. . . . . . . 8
|
| 57 | 56 | imp 124 |
. . . . . . 7
|
| 58 | nnasuc 6534 |
. . . . . . 7
| |
| 59 | 57, 58 | eqeq12d 2211 |
. . . . . 6
|
| 60 | 17, 59 | imbitrrid 156 |
. . . . 5
|
| 61 | 60 | expcom 116 |
. . . 4
|
| 62 | 7, 10, 13, 16, 61 | finds2 4637 |
. . 3
|
| 63 | 4, 62 | vtoclga 2830 |
. 2
|
| 64 | 63 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 |
| This theorem is referenced by: nnmsucr 6546 nnaordi 6566 nnaordr 6568 nnaword 6569 nnaword2 6572 nnawordi 6573 addcompig 7396 nqpnq0nq 7520 prarloclemlt 7560 prarloclemlo 7561 |
| Copyright terms: Public domain | W3C validator |