| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnacom | Unicode version | ||
| Description: Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnacom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6008 |
. . . . 5
| |
| 2 | oveq2 6009 |
. . . . 5
| |
| 3 | 1, 2 | eqeq12d 2244 |
. . . 4
|
| 4 | 3 | imbi2d 230 |
. . 3
|
| 5 | oveq1 6008 |
. . . . 5
| |
| 6 | oveq2 6009 |
. . . . 5
| |
| 7 | 5, 6 | eqeq12d 2244 |
. . . 4
|
| 8 | oveq1 6008 |
. . . . 5
| |
| 9 | oveq2 6009 |
. . . . 5
| |
| 10 | 8, 9 | eqeq12d 2244 |
. . . 4
|
| 11 | oveq1 6008 |
. . . . 5
| |
| 12 | oveq2 6009 |
. . . . 5
| |
| 13 | 11, 12 | eqeq12d 2244 |
. . . 4
|
| 14 | nna0r 6624 |
. . . . 5
| |
| 15 | nna0 6620 |
. . . . 5
| |
| 16 | 14, 15 | eqtr4d 2265 |
. . . 4
|
| 17 | suceq 4493 |
. . . . . 6
| |
| 18 | oveq2 6009 |
. . . . . . . . . . 11
| |
| 19 | oveq2 6009 |
. . . . . . . . . . . 12
| |
| 20 | suceq 4493 |
. . . . . . . . . . . 12
| |
| 21 | 19, 20 | syl 14 |
. . . . . . . . . . 11
|
| 22 | 18, 21 | eqeq12d 2244 |
. . . . . . . . . 10
|
| 23 | 22 | imbi2d 230 |
. . . . . . . . 9
|
| 24 | oveq2 6009 |
. . . . . . . . . . 11
| |
| 25 | oveq2 6009 |
. . . . . . . . . . . 12
| |
| 26 | suceq 4493 |
. . . . . . . . . . . 12
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . . . . 11
|
| 28 | 24, 27 | eqeq12d 2244 |
. . . . . . . . . 10
|
| 29 | oveq2 6009 |
. . . . . . . . . . 11
| |
| 30 | oveq2 6009 |
. . . . . . . . . . . 12
| |
| 31 | suceq 4493 |
. . . . . . . . . . . 12
| |
| 32 | 30, 31 | syl 14 |
. . . . . . . . . . 11
|
| 33 | 29, 32 | eqeq12d 2244 |
. . . . . . . . . 10
|
| 34 | oveq2 6009 |
. . . . . . . . . . 11
| |
| 35 | oveq2 6009 |
. . . . . . . . . . . 12
| |
| 36 | suceq 4493 |
. . . . . . . . . . . 12
| |
| 37 | 35, 36 | syl 14 |
. . . . . . . . . . 11
|
| 38 | 34, 37 | eqeq12d 2244 |
. . . . . . . . . 10
|
| 39 | peano2 4687 |
. . . . . . . . . . . 12
| |
| 40 | nna0 6620 |
. . . . . . . . . . . 12
| |
| 41 | 39, 40 | syl 14 |
. . . . . . . . . . 11
|
| 42 | nna0 6620 |
. . . . . . . . . . . 12
| |
| 43 | suceq 4493 |
. . . . . . . . . . . 12
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . . . . 11
|
| 45 | 41, 44 | eqtr4d 2265 |
. . . . . . . . . 10
|
| 46 | suceq 4493 |
. . . . . . . . . . . 12
| |
| 47 | nnasuc 6622 |
. . . . . . . . . . . . . 14
| |
| 48 | 39, 47 | sylan 283 |
. . . . . . . . . . . . 13
|
| 49 | nnasuc 6622 |
. . . . . . . . . . . . . 14
| |
| 50 | suceq 4493 |
. . . . . . . . . . . . . 14
| |
| 51 | 49, 50 | syl 14 |
. . . . . . . . . . . . 13
|
| 52 | 48, 51 | eqeq12d 2244 |
. . . . . . . . . . . 12
|
| 53 | 46, 52 | imbitrrid 156 |
. . . . . . . . . . 11
|
| 54 | 53 | expcom 116 |
. . . . . . . . . 10
|
| 55 | 28, 33, 38, 45, 54 | finds2 4693 |
. . . . . . . . 9
|
| 56 | 23, 55 | vtoclga 2867 |
. . . . . . . 8
|
| 57 | 56 | imp 124 |
. . . . . . 7
|
| 58 | nnasuc 6622 |
. . . . . . 7
| |
| 59 | 57, 58 | eqeq12d 2244 |
. . . . . 6
|
| 60 | 17, 59 | imbitrrid 156 |
. . . . 5
|
| 61 | 60 | expcom 116 |
. . . 4
|
| 62 | 7, 10, 13, 16, 61 | finds2 4693 |
. . 3
|
| 63 | 4, 62 | vtoclga 2867 |
. 2
|
| 64 | 63 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-oadd 6566 |
| This theorem is referenced by: nnmsucr 6634 nnaordi 6654 nnaordr 6656 nnaword 6657 nnaword2 6660 nnawordi 6661 addcompig 7516 nqpnq0nq 7640 prarloclemlt 7680 prarloclemlo 7681 |
| Copyright terms: Public domain | W3C validator |