Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnacom | Unicode version |
Description: Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
nnacom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5860 | . . . . 5 | |
2 | oveq2 5861 | . . . . 5 | |
3 | 1, 2 | eqeq12d 2185 | . . . 4 |
4 | 3 | imbi2d 229 | . . 3 |
5 | oveq1 5860 | . . . . 5 | |
6 | oveq2 5861 | . . . . 5 | |
7 | 5, 6 | eqeq12d 2185 | . . . 4 |
8 | oveq1 5860 | . . . . 5 | |
9 | oveq2 5861 | . . . . 5 | |
10 | 8, 9 | eqeq12d 2185 | . . . 4 |
11 | oveq1 5860 | . . . . 5 | |
12 | oveq2 5861 | . . . . 5 | |
13 | 11, 12 | eqeq12d 2185 | . . . 4 |
14 | nna0r 6457 | . . . . 5 | |
15 | nna0 6453 | . . . . 5 | |
16 | 14, 15 | eqtr4d 2206 | . . . 4 |
17 | suceq 4387 | . . . . . 6 | |
18 | oveq2 5861 | . . . . . . . . . . 11 | |
19 | oveq2 5861 | . . . . . . . . . . . 12 | |
20 | suceq 4387 | . . . . . . . . . . . 12 | |
21 | 19, 20 | syl 14 | . . . . . . . . . . 11 |
22 | 18, 21 | eqeq12d 2185 | . . . . . . . . . 10 |
23 | 22 | imbi2d 229 | . . . . . . . . 9 |
24 | oveq2 5861 | . . . . . . . . . . 11 | |
25 | oveq2 5861 | . . . . . . . . . . . 12 | |
26 | suceq 4387 | . . . . . . . . . . . 12 | |
27 | 25, 26 | syl 14 | . . . . . . . . . . 11 |
28 | 24, 27 | eqeq12d 2185 | . . . . . . . . . 10 |
29 | oveq2 5861 | . . . . . . . . . . 11 | |
30 | oveq2 5861 | . . . . . . . . . . . 12 | |
31 | suceq 4387 | . . . . . . . . . . . 12 | |
32 | 30, 31 | syl 14 | . . . . . . . . . . 11 |
33 | 29, 32 | eqeq12d 2185 | . . . . . . . . . 10 |
34 | oveq2 5861 | . . . . . . . . . . 11 | |
35 | oveq2 5861 | . . . . . . . . . . . 12 | |
36 | suceq 4387 | . . . . . . . . . . . 12 | |
37 | 35, 36 | syl 14 | . . . . . . . . . . 11 |
38 | 34, 37 | eqeq12d 2185 | . . . . . . . . . 10 |
39 | peano2 4579 | . . . . . . . . . . . 12 | |
40 | nna0 6453 | . . . . . . . . . . . 12 | |
41 | 39, 40 | syl 14 | . . . . . . . . . . 11 |
42 | nna0 6453 | . . . . . . . . . . . 12 | |
43 | suceq 4387 | . . . . . . . . . . . 12 | |
44 | 42, 43 | syl 14 | . . . . . . . . . . 11 |
45 | 41, 44 | eqtr4d 2206 | . . . . . . . . . 10 |
46 | suceq 4387 | . . . . . . . . . . . 12 | |
47 | nnasuc 6455 | . . . . . . . . . . . . . 14 | |
48 | 39, 47 | sylan 281 | . . . . . . . . . . . . 13 |
49 | nnasuc 6455 | . . . . . . . . . . . . . 14 | |
50 | suceq 4387 | . . . . . . . . . . . . . 14 | |
51 | 49, 50 | syl 14 | . . . . . . . . . . . . 13 |
52 | 48, 51 | eqeq12d 2185 | . . . . . . . . . . . 12 |
53 | 46, 52 | syl5ibr 155 | . . . . . . . . . . 11 |
54 | 53 | expcom 115 | . . . . . . . . . 10 |
55 | 28, 33, 38, 45, 54 | finds2 4585 | . . . . . . . . 9 |
56 | 23, 55 | vtoclga 2796 | . . . . . . . 8 |
57 | 56 | imp 123 | . . . . . . 7 |
58 | nnasuc 6455 | . . . . . . 7 | |
59 | 57, 58 | eqeq12d 2185 | . . . . . 6 |
60 | 17, 59 | syl5ibr 155 | . . . . 5 |
61 | 60 | expcom 115 | . . . 4 |
62 | 7, 10, 13, 16, 61 | finds2 4585 | . . 3 |
63 | 4, 62 | vtoclga 2796 | . 2 |
64 | 63 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 c0 3414 csuc 4350 com 4574 (class class class)co 5853 coa 6392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 |
This theorem is referenced by: nnmsucr 6467 nnaordi 6487 nnaordr 6489 nnaword 6490 nnaword2 6493 nnawordi 6494 addcompig 7291 nqpnq0nq 7415 prarloclemlt 7455 prarloclemlo 7456 |
Copyright terms: Public domain | W3C validator |