Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnacom | Unicode version |
Description: Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
nnacom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5849 | . . . . 5 | |
2 | oveq2 5850 | . . . . 5 | |
3 | 1, 2 | eqeq12d 2180 | . . . 4 |
4 | 3 | imbi2d 229 | . . 3 |
5 | oveq1 5849 | . . . . 5 | |
6 | oveq2 5850 | . . . . 5 | |
7 | 5, 6 | eqeq12d 2180 | . . . 4 |
8 | oveq1 5849 | . . . . 5 | |
9 | oveq2 5850 | . . . . 5 | |
10 | 8, 9 | eqeq12d 2180 | . . . 4 |
11 | oveq1 5849 | . . . . 5 | |
12 | oveq2 5850 | . . . . 5 | |
13 | 11, 12 | eqeq12d 2180 | . . . 4 |
14 | nna0r 6446 | . . . . 5 | |
15 | nna0 6442 | . . . . 5 | |
16 | 14, 15 | eqtr4d 2201 | . . . 4 |
17 | suceq 4380 | . . . . . 6 | |
18 | oveq2 5850 | . . . . . . . . . . 11 | |
19 | oveq2 5850 | . . . . . . . . . . . 12 | |
20 | suceq 4380 | . . . . . . . . . . . 12 | |
21 | 19, 20 | syl 14 | . . . . . . . . . . 11 |
22 | 18, 21 | eqeq12d 2180 | . . . . . . . . . 10 |
23 | 22 | imbi2d 229 | . . . . . . . . 9 |
24 | oveq2 5850 | . . . . . . . . . . 11 | |
25 | oveq2 5850 | . . . . . . . . . . . 12 | |
26 | suceq 4380 | . . . . . . . . . . . 12 | |
27 | 25, 26 | syl 14 | . . . . . . . . . . 11 |
28 | 24, 27 | eqeq12d 2180 | . . . . . . . . . 10 |
29 | oveq2 5850 | . . . . . . . . . . 11 | |
30 | oveq2 5850 | . . . . . . . . . . . 12 | |
31 | suceq 4380 | . . . . . . . . . . . 12 | |
32 | 30, 31 | syl 14 | . . . . . . . . . . 11 |
33 | 29, 32 | eqeq12d 2180 | . . . . . . . . . 10 |
34 | oveq2 5850 | . . . . . . . . . . 11 | |
35 | oveq2 5850 | . . . . . . . . . . . 12 | |
36 | suceq 4380 | . . . . . . . . . . . 12 | |
37 | 35, 36 | syl 14 | . . . . . . . . . . 11 |
38 | 34, 37 | eqeq12d 2180 | . . . . . . . . . 10 |
39 | peano2 4572 | . . . . . . . . . . . 12 | |
40 | nna0 6442 | . . . . . . . . . . . 12 | |
41 | 39, 40 | syl 14 | . . . . . . . . . . 11 |
42 | nna0 6442 | . . . . . . . . . . . 12 | |
43 | suceq 4380 | . . . . . . . . . . . 12 | |
44 | 42, 43 | syl 14 | . . . . . . . . . . 11 |
45 | 41, 44 | eqtr4d 2201 | . . . . . . . . . 10 |
46 | suceq 4380 | . . . . . . . . . . . 12 | |
47 | nnasuc 6444 | . . . . . . . . . . . . . 14 | |
48 | 39, 47 | sylan 281 | . . . . . . . . . . . . 13 |
49 | nnasuc 6444 | . . . . . . . . . . . . . 14 | |
50 | suceq 4380 | . . . . . . . . . . . . . 14 | |
51 | 49, 50 | syl 14 | . . . . . . . . . . . . 13 |
52 | 48, 51 | eqeq12d 2180 | . . . . . . . . . . . 12 |
53 | 46, 52 | syl5ibr 155 | . . . . . . . . . . 11 |
54 | 53 | expcom 115 | . . . . . . . . . 10 |
55 | 28, 33, 38, 45, 54 | finds2 4578 | . . . . . . . . 9 |
56 | 23, 55 | vtoclga 2792 | . . . . . . . 8 |
57 | 56 | imp 123 | . . . . . . 7 |
58 | nnasuc 6444 | . . . . . . 7 | |
59 | 57, 58 | eqeq12d 2180 | . . . . . 6 |
60 | 17, 59 | syl5ibr 155 | . . . . 5 |
61 | 60 | expcom 115 | . . . 4 |
62 | 7, 10, 13, 16, 61 | finds2 4578 | . . 3 |
63 | 4, 62 | vtoclga 2792 | . 2 |
64 | 63 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 c0 3409 csuc 4343 com 4567 (class class class)co 5842 coa 6381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 |
This theorem is referenced by: nnmsucr 6456 nnaordi 6476 nnaordr 6478 nnaword 6479 nnaword2 6482 nnawordi 6483 addcompig 7270 nqpnq0nq 7394 prarloclemlt 7434 prarloclemlo 7435 |
Copyright terms: Public domain | W3C validator |