![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addpiord | GIF version |
Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.) |
Ref | Expression |
---|---|
addpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4483 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
2 | fvres 5342 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (( +o ↾ (N × N))‘〈𝐴, 𝐵〉) = ( +o ‘〈𝐴, 𝐵〉)) | |
3 | df-ov 5669 | . . . 4 ⊢ (𝐴 +N 𝐵) = ( +N ‘〈𝐴, 𝐵〉) | |
4 | df-pli 6925 | . . . . 5 ⊢ +N = ( +o ↾ (N × N)) | |
5 | 4 | fveq1i 5319 | . . . 4 ⊢ ( +N ‘〈𝐴, 𝐵〉) = (( +o ↾ (N × N))‘〈𝐴, 𝐵〉) |
6 | 3, 5 | eqtri 2109 | . . 3 ⊢ (𝐴 +N 𝐵) = (( +o ↾ (N × N))‘〈𝐴, 𝐵〉) |
7 | df-ov 5669 | . . 3 ⊢ (𝐴 +o 𝐵) = ( +o ‘〈𝐴, 𝐵〉) | |
8 | 2, 6, 7 | 3eqtr4g 2146 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
9 | 1, 8 | syl 14 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1290 ∈ wcel 1439 〈cop 3453 × cxp 4450 ↾ cres 4454 ‘cfv 5028 (class class class)co 5666 +o coa 6192 Ncnpi 6892 +N cpli 6893 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-xp 4458 df-res 4464 df-iota 4993 df-fv 5036 df-ov 5669 df-pli 6925 |
This theorem is referenced by: addclpi 6947 addcompig 6949 addasspig 6950 distrpig 6953 addcanpig 6954 addnidpig 6956 ltexpi 6957 ltapig 6958 1lt2pi 6960 indpi 6962 archnqq 7037 prarloclemarch2 7039 nqnq0a 7074 |
Copyright terms: Public domain | W3C validator |