| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addpiord | GIF version | ||
| Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.) |
| Ref | Expression |
|---|---|
| addpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 4750 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
| 2 | fvres 5650 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (( +o ↾ (N × N))‘〈𝐴, 𝐵〉) = ( +o ‘〈𝐴, 𝐵〉)) | |
| 3 | df-ov 6003 | . . . 4 ⊢ (𝐴 +N 𝐵) = ( +N ‘〈𝐴, 𝐵〉) | |
| 4 | df-pli 7488 | . . . . 5 ⊢ +N = ( +o ↾ (N × N)) | |
| 5 | 4 | fveq1i 5627 | . . . 4 ⊢ ( +N ‘〈𝐴, 𝐵〉) = (( +o ↾ (N × N))‘〈𝐴, 𝐵〉) |
| 6 | 3, 5 | eqtri 2250 | . . 3 ⊢ (𝐴 +N 𝐵) = (( +o ↾ (N × N))‘〈𝐴, 𝐵〉) |
| 7 | df-ov 6003 | . . 3 ⊢ (𝐴 +o 𝐵) = ( +o ‘〈𝐴, 𝐵〉) | |
| 8 | 2, 6, 7 | 3eqtr4g 2287 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
| 9 | 1, 8 | syl 14 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 〈cop 3669 × cxp 4716 ↾ cres 4720 ‘cfv 5317 (class class class)co 6000 +o coa 6557 Ncnpi 7455 +N cpli 7456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-res 4730 df-iota 5277 df-fv 5325 df-ov 6003 df-pli 7488 |
| This theorem is referenced by: addclpi 7510 addcompig 7512 addasspig 7513 distrpig 7516 addcanpig 7517 addnidpig 7519 ltexpi 7520 ltapig 7521 1lt2pi 7523 indpi 7525 archnqq 7600 prarloclemarch2 7602 nqnq0a 7637 |
| Copyright terms: Public domain | W3C validator |