Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addpiord | GIF version |
Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.) |
Ref | Expression |
---|---|
addpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4636 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
2 | fvres 5510 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (( +o ↾ (N × N))‘〈𝐴, 𝐵〉) = ( +o ‘〈𝐴, 𝐵〉)) | |
3 | df-ov 5845 | . . . 4 ⊢ (𝐴 +N 𝐵) = ( +N ‘〈𝐴, 𝐵〉) | |
4 | df-pli 7246 | . . . . 5 ⊢ +N = ( +o ↾ (N × N)) | |
5 | 4 | fveq1i 5487 | . . . 4 ⊢ ( +N ‘〈𝐴, 𝐵〉) = (( +o ↾ (N × N))‘〈𝐴, 𝐵〉) |
6 | 3, 5 | eqtri 2186 | . . 3 ⊢ (𝐴 +N 𝐵) = (( +o ↾ (N × N))‘〈𝐴, 𝐵〉) |
7 | df-ov 5845 | . . 3 ⊢ (𝐴 +o 𝐵) = ( +o ‘〈𝐴, 𝐵〉) | |
8 | 2, 6, 7 | 3eqtr4g 2224 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
9 | 1, 8 | syl 14 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 〈cop 3579 × cxp 4602 ↾ cres 4606 ‘cfv 5188 (class class class)co 5842 +o coa 6381 Ncnpi 7213 +N cpli 7214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-res 4616 df-iota 5153 df-fv 5196 df-ov 5845 df-pli 7246 |
This theorem is referenced by: addclpi 7268 addcompig 7270 addasspig 7271 distrpig 7274 addcanpig 7275 addnidpig 7277 ltexpi 7278 ltapig 7279 1lt2pi 7281 indpi 7283 archnqq 7358 prarloclemarch2 7360 nqnq0a 7395 |
Copyright terms: Public domain | W3C validator |