ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addpiord GIF version

Theorem addpiord 7290
Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
addpiord ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))

Proof of Theorem addpiord
StepHypRef Expression
1 opelxpi 4652 . 2 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
2 fvres 5531 . . 3 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (( +o ↾ (N × N))‘⟨𝐴, 𝐵⟩) = ( +o ‘⟨𝐴, 𝐵⟩))
3 df-ov 5868 . . . 4 (𝐴 +N 𝐵) = ( +N ‘⟨𝐴, 𝐵⟩)
4 df-pli 7279 . . . . 5 +N = ( +o ↾ (N × N))
54fveq1i 5508 . . . 4 ( +N ‘⟨𝐴, 𝐵⟩) = (( +o ↾ (N × N))‘⟨𝐴, 𝐵⟩)
63, 5eqtri 2196 . . 3 (𝐴 +N 𝐵) = (( +o ↾ (N × N))‘⟨𝐴, 𝐵⟩)
7 df-ov 5868 . . 3 (𝐴 +o 𝐵) = ( +o ‘⟨𝐴, 𝐵⟩)
82, 6, 73eqtr4g 2233 . 2 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
91, 8syl 14 1 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  cop 3592   × cxp 4618  cres 4622  cfv 5208  (class class class)co 5865   +o coa 6404  Ncnpi 7246   +N cpli 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-xp 4626  df-res 4632  df-iota 5170  df-fv 5216  df-ov 5868  df-pli 7279
This theorem is referenced by:  addclpi  7301  addcompig  7303  addasspig  7304  distrpig  7307  addcanpig  7308  addnidpig  7310  ltexpi  7311  ltapig  7312  1lt2pi  7314  indpi  7316  archnqq  7391  prarloclemarch2  7393  nqnq0a  7428
  Copyright terms: Public domain W3C validator