![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addpiord | GIF version |
Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.) |
Ref | Expression |
---|---|
addpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4659 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ⟨𝐴, 𝐵⟩ ∈ (N × N)) | |
2 | fvres 5540 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ (N × N) → (( +o ↾ (N × N))‘⟨𝐴, 𝐵⟩) = ( +o ‘⟨𝐴, 𝐵⟩)) | |
3 | df-ov 5878 | . . . 4 ⊢ (𝐴 +N 𝐵) = ( +N ‘⟨𝐴, 𝐵⟩) | |
4 | df-pli 7304 | . . . . 5 ⊢ +N = ( +o ↾ (N × N)) | |
5 | 4 | fveq1i 5517 | . . . 4 ⊢ ( +N ‘⟨𝐴, 𝐵⟩) = (( +o ↾ (N × N))‘⟨𝐴, 𝐵⟩) |
6 | 3, 5 | eqtri 2198 | . . 3 ⊢ (𝐴 +N 𝐵) = (( +o ↾ (N × N))‘⟨𝐴, 𝐵⟩) |
7 | df-ov 5878 | . . 3 ⊢ (𝐴 +o 𝐵) = ( +o ‘⟨𝐴, 𝐵⟩) | |
8 | 2, 6, 7 | 3eqtr4g 2235 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ (N × N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
9 | 1, 8 | syl 14 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ⟨cop 3596 × cxp 4625 ↾ cres 4629 ‘cfv 5217 (class class class)co 5875 +o coa 6414 Ncnpi 7271 +N cpli 7272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-xp 4633 df-res 4639 df-iota 5179 df-fv 5225 df-ov 5878 df-pli 7304 |
This theorem is referenced by: addclpi 7326 addcompig 7328 addasspig 7329 distrpig 7332 addcanpig 7333 addnidpig 7335 ltexpi 7336 ltapig 7337 1lt2pi 7339 indpi 7341 archnqq 7416 prarloclemarch2 7418 nqnq0a 7453 |
Copyright terms: Public domain | W3C validator |