| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addpiord | GIF version | ||
| Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.) |
| Ref | Expression |
|---|---|
| addpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 4696 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
| 2 | fvres 5585 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (( +o ↾ (N × N))‘〈𝐴, 𝐵〉) = ( +o ‘〈𝐴, 𝐵〉)) | |
| 3 | df-ov 5928 | . . . 4 ⊢ (𝐴 +N 𝐵) = ( +N ‘〈𝐴, 𝐵〉) | |
| 4 | df-pli 7389 | . . . . 5 ⊢ +N = ( +o ↾ (N × N)) | |
| 5 | 4 | fveq1i 5562 | . . . 4 ⊢ ( +N ‘〈𝐴, 𝐵〉) = (( +o ↾ (N × N))‘〈𝐴, 𝐵〉) |
| 6 | 3, 5 | eqtri 2217 | . . 3 ⊢ (𝐴 +N 𝐵) = (( +o ↾ (N × N))‘〈𝐴, 𝐵〉) |
| 7 | df-ov 5928 | . . 3 ⊢ (𝐴 +o 𝐵) = ( +o ‘〈𝐴, 𝐵〉) | |
| 8 | 2, 6, 7 | 3eqtr4g 2254 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
| 9 | 1, 8 | syl 14 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 〈cop 3626 × cxp 4662 ↾ cres 4666 ‘cfv 5259 (class class class)co 5925 +o coa 6480 Ncnpi 7356 +N cpli 7357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-res 4676 df-iota 5220 df-fv 5267 df-ov 5928 df-pli 7389 |
| This theorem is referenced by: addclpi 7411 addcompig 7413 addasspig 7414 distrpig 7417 addcanpig 7418 addnidpig 7420 ltexpi 7421 ltapig 7422 1lt2pi 7424 indpi 7426 archnqq 7501 prarloclemarch2 7503 nqnq0a 7538 |
| Copyright terms: Public domain | W3C validator |