ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanpig Unicode version

Theorem addcanpig 7283
Description: Addition cancellation law for positive integers. (Contributed by Jim Kingdon, 27-Aug-2019.)
Assertion
Ref Expression
addcanpig  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +N  B
)  =  ( A  +N  C )  <->  B  =  C ) )

Proof of Theorem addcanpig
StepHypRef Expression
1 addpiord 7265 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
213adant3 1012 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  +N  B )  =  ( A  +o  B
) )
3 addpiord 7265 . . . . 5  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  +N  C
)  =  ( A  +o  C ) )
433adant2 1011 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  +N  C )  =  ( A  +o  C
) )
52, 4eqeq12d 2185 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +N  B
)  =  ( A  +N  C )  <->  ( A  +o  B )  =  ( A  +o  C ) ) )
6 pinn 7258 . . . 4  |-  ( A  e.  N.  ->  A  e.  om )
7 pinn 7258 . . . 4  |-  ( B  e.  N.  ->  B  e.  om )
8 pinn 7258 . . . 4  |-  ( C  e.  N.  ->  C  e.  om )
9 nnacan 6488 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  =  ( A  +o  C )  <->  B  =  C ) )
109biimpd 143 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  =  ( A  +o  C )  ->  B  =  C )
)
116, 7, 8, 10syl3an 1275 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +o  B
)  =  ( A  +o  C )  ->  B  =  C )
)
125, 11sylbid 149 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +N  B
)  =  ( A  +N  C )  ->  B  =  C )
)
13 oveq2 5858 . 2  |-  ( B  =  C  ->  ( A  +N  B )  =  ( A  +N  C
) )
1412, 13impbid1 141 1  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  +N  B
)  =  ( A  +N  C )  <->  B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   omcom 4572  (class class class)co 5850    +o coa 6389   N.cnpi 7221    +N cpli 7222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-oadd 6396  df-ni 7253  df-pli 7254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator