| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulpiord | Unicode version | ||
| Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) |
| Ref | Expression |
|---|---|
| mulpiord |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 4708 |
. 2
| |
| 2 | fvres 5602 |
. . 3
| |
| 3 | df-ov 5949 |
. . . 4
| |
| 4 | df-mi 7421 |
. . . . 5
| |
| 5 | 4 | fveq1i 5579 |
. . . 4
|
| 6 | 3, 5 | eqtri 2226 |
. . 3
|
| 7 | df-ov 5949 |
. . 3
| |
| 8 | 2, 6, 7 | 3eqtr4g 2263 |
. 2
|
| 9 | 1, 8 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-res 4688 df-iota 5233 df-fv 5280 df-ov 5949 df-mi 7421 |
| This theorem is referenced by: mulidpi 7433 mulclpi 7443 mulcompig 7446 mulasspig 7447 distrpig 7448 mulcanpig 7450 ltmpig 7454 archnqq 7532 enq0enq 7546 addcmpblnq0 7558 mulcmpblnq0 7559 mulcanenq0ec 7560 addclnq0 7566 mulclnq0 7567 nqpnq0nq 7568 nqnq0a 7569 nqnq0m 7570 nq0m0r 7571 distrnq0 7574 addassnq0lemcl 7576 |
| Copyright terms: Public domain | W3C validator |