ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpiord Unicode version

Theorem mulpiord 7279
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
mulpiord  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )

Proof of Theorem mulpiord
StepHypRef Expression
1 opelxpi 4643 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
2 fvres 5520 . . 3  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( (  .o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )  =  (  .o  `  <. A ,  B >. )
)
3 df-ov 5856 . . . 4  |-  ( A  .N  B )  =  (  .N  `  <. A ,  B >. )
4 df-mi 7268 . . . . 5  |-  .N  =  (  .o  |`  ( N.  X.  N. ) )
54fveq1i 5497 . . . 4  |-  (  .N 
`  <. A ,  B >. )  =  ( (  .o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )
63, 5eqtri 2191 . . 3  |-  ( A  .N  B )  =  ( (  .o  |`  ( N.  X.  N. ) ) `
 <. A ,  B >. )
7 df-ov 5856 . . 3  |-  ( A  .o  B )  =  (  .o  `  <. A ,  B >. )
82, 6, 73eqtr4g 2228 . 2  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( A  .N  B )  =  ( A  .o  B ) )
91, 8syl 14 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   <.cop 3586    X. cxp 4609    |` cres 4613   ` cfv 5198  (class class class)co 5853    .o comu 6393   N.cnpi 7234    .N cmi 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-res 4623  df-iota 5160  df-fv 5206  df-ov 5856  df-mi 7268
This theorem is referenced by:  mulidpi  7280  mulclpi  7290  mulcompig  7293  mulasspig  7294  distrpig  7295  mulcanpig  7297  ltmpig  7301  archnqq  7379  enq0enq  7393  addcmpblnq0  7405  mulcmpblnq0  7406  mulcanenq0ec  7407  addclnq0  7413  mulclnq0  7414  nqpnq0nq  7415  nqnq0a  7416  nqnq0m  7417  nq0m0r  7418  distrnq0  7421  addassnq0lemcl  7423
  Copyright terms: Public domain W3C validator