Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulpiord | Unicode version |
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) |
Ref | Expression |
---|---|
mulpiord |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4643 | . 2 | |
2 | fvres 5520 | . . 3 | |
3 | df-ov 5856 | . . . 4 | |
4 | df-mi 7268 | . . . . 5 | |
5 | 4 | fveq1i 5497 | . . . 4 |
6 | 3, 5 | eqtri 2191 | . . 3 |
7 | df-ov 5856 | . . 3 | |
8 | 2, 6, 7 | 3eqtr4g 2228 | . 2 |
9 | 1, 8 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cop 3586 cxp 4609 cres 4613 cfv 5198 (class class class)co 5853 comu 6393 cnpi 7234 cmi 7236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-res 4623 df-iota 5160 df-fv 5206 df-ov 5856 df-mi 7268 |
This theorem is referenced by: mulidpi 7280 mulclpi 7290 mulcompig 7293 mulasspig 7294 distrpig 7295 mulcanpig 7297 ltmpig 7301 archnqq 7379 enq0enq 7393 addcmpblnq0 7405 mulcmpblnq0 7406 mulcanenq0ec 7407 addclnq0 7413 mulclnq0 7414 nqpnq0nq 7415 nqnq0a 7416 nqnq0m 7417 nq0m0r 7418 distrnq0 7421 addassnq0lemcl 7423 |
Copyright terms: Public domain | W3C validator |