Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulpiord | Unicode version |
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) |
Ref | Expression |
---|---|
mulpiord |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4641 | . 2 | |
2 | fvres 5518 | . . 3 | |
3 | df-ov 5854 | . . . 4 | |
4 | df-mi 7257 | . . . . 5 | |
5 | 4 | fveq1i 5495 | . . . 4 |
6 | 3, 5 | eqtri 2191 | . . 3 |
7 | df-ov 5854 | . . 3 | |
8 | 2, 6, 7 | 3eqtr4g 2228 | . 2 |
9 | 1, 8 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cop 3584 cxp 4607 cres 4611 cfv 5196 (class class class)co 5851 comu 6391 cnpi 7223 cmi 7225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-xp 4615 df-res 4621 df-iota 5158 df-fv 5204 df-ov 5854 df-mi 7257 |
This theorem is referenced by: mulidpi 7269 mulclpi 7279 mulcompig 7282 mulasspig 7283 distrpig 7284 mulcanpig 7286 ltmpig 7290 archnqq 7368 enq0enq 7382 addcmpblnq0 7394 mulcmpblnq0 7395 mulcanenq0ec 7396 addclnq0 7402 mulclnq0 7403 nqpnq0nq 7404 nqnq0a 7405 nqnq0m 7406 nq0m0r 7407 distrnq0 7410 addassnq0lemcl 7412 |
Copyright terms: Public domain | W3C validator |