| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulpiord | Unicode version | ||
| Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| mulpiord | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opelxpi 4695 | 
. 2
 | |
| 2 | fvres 5582 | 
. . 3
 | |
| 3 | df-ov 5925 | 
. . . 4
 | |
| 4 | df-mi 7373 | 
. . . . 5
 | |
| 5 | 4 | fveq1i 5559 | 
. . . 4
 | 
| 6 | 3, 5 | eqtri 2217 | 
. . 3
 | 
| 7 | df-ov 5925 | 
. . 3
 | |
| 8 | 2, 6, 7 | 3eqtr4g 2254 | 
. 2
 | 
| 9 | 1, 8 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-res 4675 df-iota 5219 df-fv 5266 df-ov 5925 df-mi 7373 | 
| This theorem is referenced by: mulidpi 7385 mulclpi 7395 mulcompig 7398 mulasspig 7399 distrpig 7400 mulcanpig 7402 ltmpig 7406 archnqq 7484 enq0enq 7498 addcmpblnq0 7510 mulcmpblnq0 7511 mulcanenq0ec 7512 addclnq0 7518 mulclnq0 7519 nqpnq0nq 7520 nqnq0a 7521 nqnq0m 7522 nq0m0r 7523 distrnq0 7526 addassnq0lemcl 7528 | 
| Copyright terms: Public domain | W3C validator |