ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpiord Unicode version

Theorem mulpiord 7334
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
mulpiord  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )

Proof of Theorem mulpiord
StepHypRef Expression
1 opelxpi 4673 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
2 fvres 5554 . . 3  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( (  .o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )  =  (  .o  `  <. A ,  B >. )
)
3 df-ov 5894 . . . 4  |-  ( A  .N  B )  =  (  .N  `  <. A ,  B >. )
4 df-mi 7323 . . . . 5  |-  .N  =  (  .o  |`  ( N.  X.  N. ) )
54fveq1i 5531 . . . 4  |-  (  .N 
`  <. A ,  B >. )  =  ( (  .o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )
63, 5eqtri 2210 . . 3  |-  ( A  .N  B )  =  ( (  .o  |`  ( N.  X.  N. ) ) `
 <. A ,  B >. )
7 df-ov 5894 . . 3  |-  ( A  .o  B )  =  (  .o  `  <. A ,  B >. )
82, 6, 73eqtr4g 2247 . 2  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( A  .N  B )  =  ( A  .o  B ) )
91, 8syl 14 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   <.cop 3610    X. cxp 4639    |` cres 4643   ` cfv 5231  (class class class)co 5891    .o comu 6433   N.cnpi 7289    .N cmi 7291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4647  df-res 4653  df-iota 5193  df-fv 5239  df-ov 5894  df-mi 7323
This theorem is referenced by:  mulidpi  7335  mulclpi  7345  mulcompig  7348  mulasspig  7349  distrpig  7350  mulcanpig  7352  ltmpig  7356  archnqq  7434  enq0enq  7448  addcmpblnq0  7460  mulcmpblnq0  7461  mulcanenq0ec  7462  addclnq0  7468  mulclnq0  7469  nqpnq0nq  7470  nqnq0a  7471  nqnq0m  7472  nq0m0r  7473  distrnq0  7476  addassnq0lemcl  7478
  Copyright terms: Public domain W3C validator