ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpiord Unicode version

Theorem mulpiord 7258
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
mulpiord  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )

Proof of Theorem mulpiord
StepHypRef Expression
1 opelxpi 4636 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
2 fvres 5510 . . 3  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( (  .o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )  =  (  .o  `  <. A ,  B >. )
)
3 df-ov 5845 . . . 4  |-  ( A  .N  B )  =  (  .N  `  <. A ,  B >. )
4 df-mi 7247 . . . . 5  |-  .N  =  (  .o  |`  ( N.  X.  N. ) )
54fveq1i 5487 . . . 4  |-  (  .N 
`  <. A ,  B >. )  =  ( (  .o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )
63, 5eqtri 2186 . . 3  |-  ( A  .N  B )  =  ( (  .o  |`  ( N.  X.  N. ) ) `
 <. A ,  B >. )
7 df-ov 5845 . . 3  |-  ( A  .o  B )  =  (  .o  `  <. A ,  B >. )
82, 6, 73eqtr4g 2224 . 2  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( A  .N  B )  =  ( A  .o  B ) )
91, 8syl 14 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   <.cop 3579    X. cxp 4602    |` cres 4606   ` cfv 5188  (class class class)co 5842    .o comu 6382   N.cnpi 7213    .N cmi 7215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-res 4616  df-iota 5153  df-fv 5196  df-ov 5845  df-mi 7247
This theorem is referenced by:  mulidpi  7259  mulclpi  7269  mulcompig  7272  mulasspig  7273  distrpig  7274  mulcanpig  7276  ltmpig  7280  archnqq  7358  enq0enq  7372  addcmpblnq0  7384  mulcmpblnq0  7385  mulcanenq0ec  7386  addclnq0  7392  mulclnq0  7393  nqpnq0nq  7394  nqnq0a  7395  nqnq0m  7396  nq0m0r  7397  distrnq0  7400  addassnq0lemcl  7402
  Copyright terms: Public domain W3C validator